ГЛУБИННЫЙ ТЕПЛОВОЙ ПОТОК И НЕФТЕГАЗОНОСНОСТЬ ЯМАЛА Д. С. Крутенко¹, М. Ф. Галиева¹

Научные руководители профессор В.И. Исаев¹, профессор М. Д. Хуторской² ¹Национальный исследовательский Томский политехнический университет, г. Томск, Россия ²Геологический институт РАН, г. Москва, Россия

В рамках развития сырьевой базы углеводородов (УВ) России новыми объектами исследования становятся уникальные арктические районы Западной Сибири, требующие совершенствования критериев и технологий поисков.

Цель исследований — на примере территории полуострова Ямал изучить закономерности изменения глубинного теплового потока [4], оценить корреляцию аномалий теплового потока с локализацией известных месторождений и сформулировать возможные геотермические поисковые критерии [1].

Территория исследований находится в северной части Ямало-Ненецкого автономного округа Тюменской области (рис. 1A). Осадочный мезозойско-кайнозойский чехол Ямала начинает формироваться в ранней юре. Нефтегазоносность связана с нижнемеловой ахской свитой, в которой снизу-вверх обособляются толщи с пластами-коллекторами в них. Баженовская свита (J_3tt) является основным источником формирования залежей УВ в ловушках верхнеюрского и мелового нефтегазоносных комплексов (НГК). Вместе с тем, немалый интерес представляет и китербютская свита (J_1kt), обладающая нефтематеринским потенциалом и являющаяся источником формирования залежей УВ в ловушках нижнеюрского НГК.

Используя данные экспериментальных определений (табл. 1, рис. 1A) плотности глубинного теплового потока [5] и *расчетные* значения плотности теплового потока из основания осадочного разреза [2, 3], *впервые* построена карта плотности теплового потока Ямала.

Таблица 1 Значения плотности теплового потока, определенные в скважинах

Скважина		Тепловой	Источ-	Скважина		Тепловой	Источ-
Усл. номер (рис.1)	Название	поток, мВт/м ²	ник данных	Усл. номер (рис.1)	Название	поток, мВт/м ²	ник данных
1	Русановская-2	76	[5]	11	Бованенковская-116	62	[2]
2	Ленинградская-1	73	[5]	12	-	53	[5]
3	Белоостровская- 1	54	[5]	13	Арктическая-11	58	[2]
4	Белоостровская- 3	53	[5]	14	-	54	[5]
5	Белоостровская- 4	55	[5]	15	Средне-Ямальская- 14	51	[2]
6	-	53	[5]	16	Усть-Юрибейская- 31	48	[3]
7	-	49	[5]	17	Мало-Ямальская- 3002	51	[2]
8	-	56	[5]	18	Ростовцевская-64	50	[2]
9	-	56	[5]	19	Северо-Мантойская 51	47	[3]
10	-	58	[5]	20	Новопортовская 54	52	[3]

На этой карте (рис. 1A) можно увидеть следующие особенности: 1) «положительная аномалия» (например, район скважины Бованенковская 116); 2) «отрицательная аномалия» (например, район скважины Северо-Мантойская 51); 3) «заливообразная конфигурация изолиний» (например, район скважины Ростовцевская 64; 4) «безаномальное поле» (например, район скважины Средне-Ямальская 14).

Анализ корреляции теплового потока и положения 13-ти хорошо известных месторождений УВ Ямала (рис. 1Б) показывает следующее. В зонах положительных аномалий теплового потока находятся 6 месторождений (46% от общего числа), среди которых наиболее крупные — Бованенковское и Арктическое. В зоне отрицательной аномалии находится 1 месторождение (8%) - Южно-Тамбейское. В зонах заливообразных конфигураций изолиний находится 4 месторождения (31%): Крузенштернское, Нейтинское, Ростовцевское и Новопортовское.

СЕКЦИЯ 5. ГЕОФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЗЕМЛИ И ПОИСКОВ И РАЗВЕДКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ. ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЯХ

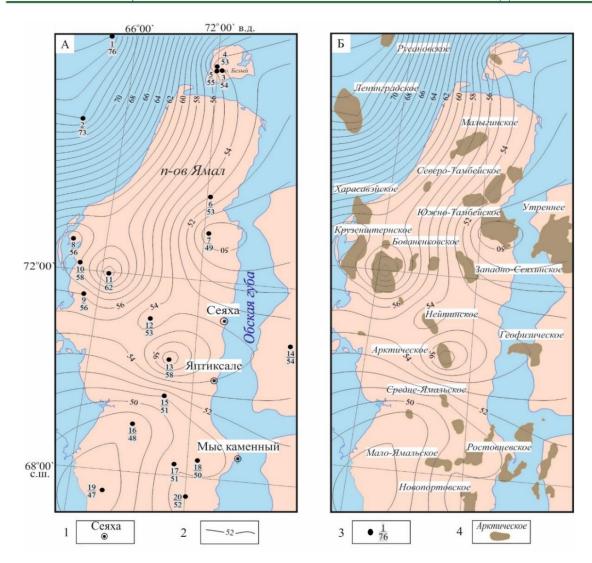


Рис. 1 Полуостров Ямал. Глубинный тепловой поток (A) и его корреляция с месторождениями углеводородов (Б): 1 — населенный пункт и его название; 2 — изолинии значений плотности теплового потока; 3 — исследуемая скважина, в числителе указан условный номер скважины (см. табл. 1), в знаменателе указано значение плотности теплового потока, мВт/м²; 4 — контур месторождения и его название.

Заключение. Таким образом, порядка 80-85% известных месторождений УВ Ямала приурочены к аномальным особенностям глубинного теплового потока. Это позволяет геотермический критерий рассматривать в качестве поискового для арктических районов Западной Сибири.

Литература

- 1. Исаев В.И. Интерпретация данных гравиметрии и геотермии при прогнозировании и поисках нефти и газа. Томск: Изд-во ТПУ, 2010. 172 с.
- 2. Исаев В.И., Искоркина А.А., Косыгин В.Ю., Лобова Г.А., Осипова Е.Н., Фомин А.Н. Комплексная оценка палеоклиматических факторов реконструкции термической истории нефтематеринской баженовской свиты арктических районов Западной Сибири // Известия Томского политехнического университета. Инжиниринг георесурсов. Томск, 2017. Т. 328. № 1. С. 13–28.
- 3. Попов С. А., Исаев В. И. Моделирование нафтидогенеза Южного Ямала // Геофизический журнал. 2011. Т. 33 № 2. С. 80–104.
- 4. Хуторской М.Д. Введение в геотермию. М.: Изд-во РУДН, 1996. 328 с.
- 5. Хуторской М. Д., Ахмедзянов В.Р., Ермаков А.В., Леонов Ю.Г., Подгорных Л.В., Поляк Б.Г., Сухих Е.А., Цыбуля Л.А. Геотермия арктических морей. М.: ГЕОС, 2013. 232 с.