ВОЗДУШНО-ПЛАЗМЕННАЯ РЕКОНВЕРСИЯ ГЕКСАФТОРИДА ОБЕДНЕННОГО УРАНА

Е.С. Алюков, Н.В. Тундешев

Научный руководитель: доцент, к.ф.-м.н. А.Г. Каренгин

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: john.judo@mail.ru

AIR-PLASMA RECONVERSION OF DEPLETED URANIUM HEXAFLUORIDE

E.S. Alukov, N.V. Tundeshev

Scientific Supervisor: lecturer, Phd. A.G. Karengin

Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: john.judo@mail.ru

Annotation. The possibility of plasma-chemical conversion of depleted uranium-235 hexafluoride (DUHF) in air plasma in the form of gas-air mixtures with hydrogen is considered in the article. Calculation of burning parameters of gas-air mixtures and the mode for energy-efficient conversion of DUHF to UO_2 in air plasma are carried out. The results of the conducted researches can be used for creation of plasma-chemical conversion of DUHF technology.

Введение. Реконверсия гексафторида урана, обеденного по изотопу уран-235, (ОГФУ) в оксиды урана является актуальной и технически сложной задачей, решением которой занимаются многие страны, использующие атомную энергетику. Единственная промышленная технология реконверсии ОГФУ, основанная на последовательном гидролизе ОГФУ до уранилфторида и пирогидролизе уранилфторида до закиси-окиси урана (ЗОУ), имеет целый ряд недостатков: многостадийность, высокие энерго- и трудозатраты, значительная потребность в химических реагентах (перегретый водяной пар, азот, водород), невозможность одностадийного получения безводного фтористого водорода [1-5].

Альтернативным методом является прямая реконверсия ОГФУ в воздушной плазме с дополнительным вводом водорода:

$$UF_6 + H_2 \rightarrow UF_4 + 2HF$$
; $\Delta H \approx 490 \text{ кДж}$. (1)

$$2H_2 + O_2 \rightarrow 2H_2O$$
; $\Delta H = -495 \text{ кДж}$ (2)

$$UF_4 + 2H_2O \rightarrow UO_2 + 4HF$$
; $\Delta H = 519 \text{ кДж, T} > 1400 \text{ K}$ (3)

Из реакций 1-3 видно, что для воздушно-плазменной реконверсии ОГФУ до диоксида урана необходимо стехиометрическое мольное соотношение в исходной смеси UF₆: H_2 =1:3. Однако авторы работы [4] указывают, что при проведении воздушно-плазменной реконверсии ОГФУ до диоксида урана мольное соотношение UF₆: H_2 = 1:3 приводит к формированию оксифторидов урана ($U_xO_yF_z$) и рекомендуют соотношение UF₆: H_2 =1:(4÷6).

Методы исследования. Одним из основных параметров горения таких смесей является температура горения [6,7]:

$$T_{cM} = \frac{Q_{H}^{cM} + \alpha \cdot m_{oK} \cdot c_{oK} \cdot t_{oK}}{V_{np} \cdot c_{np}}, K$$

XV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

где $Q_{_{\!H}}^{_{\!C\!M}}=Q_{_{\!H}}\cdot\frac{\varphi}{100}$ — низшая теплота сгорания исходной смеси, (МДж/кг); φ — содержание горючего компонента в исходной смеси (% масс.); α - коэффициент избытка окислителя (воздух); $m_{o\kappa}$ — масса теоретически необходимого окислителя (кг); $c_{o\kappa}$ — удельная теплоемкость окислителя (кДж/кг·град); $t_{o\kappa}$ — исходная температура окислителя (К); V_{np} — объем продуктов горения (м³); c_{np} — удельная теплоемкость продуктов горения (кДж/м³-град).

Расчет удельного объема и удельной теплоемкости продуктов воздушно-плазменной реконверсии ОГФУ проводился с помощью программного пакета «TERRA». Результаты расчетов параметров продуктов воздушно-плазменной реконверсии ОГФУ с мольным соотношением в исходной смеси $UF_6:H_2=1:4$ и различной массовой доле воздуха представлены в таблице 1.

Таблица I Термодинамические параметры продуктов воздушно-плазменной реконверсии $O\Gamma\Phi V$

Масс. доля ОГФУ	Масс. доля H ₂	Теплота сгорания смеси $О\Gamma\Phi Y + H_2$, $МДж/кг$	Масс. доля воздуха	Коэфф. избытка воздуха	Уд. объем продуктов м ³ /кг	Уд. теплоемкость продуктов, кДж/м ³ ·К	Температура горения смеси, К
0,66	0,01	2,75	0,33	1,15	2,79	0,97	1142
0,65	0,01		0,34	1,20	2,74	0,93	1145
0,62	0,01		0,37	1,39	2,74	0,93	1154
0,58	0,01		0,41	1,62	2,83	1,29	814

Из таблицы 1 видно, что изменение массовой доли воздуха в рамках одной композиции не оказывает сильного влияния на термодинамические параметры продуктов воздушно-плазменной реконверсии ОГФУ (удельный объем, удельная теплоемкость, температура горения).

Для определения оптимальных режимов процесса воздушно-плазменной реконверсии ОГФУ были проведены расчеты равновесных составов газообразных и твердофазных продуктов в воздушной плазме при различной массовой доле воздуха. Расчеты проводились при атмосферном давлении 0,1 МПа в диапазоне температур 1000-2000 К и различной массовой доле воздушного плазменного теплоносителя.

На рисунке 1 и 2 представлены газообразные и конденсированные продукты воздушноплазменной реконверсии ОГФУ при массовой доле воздуха 34, 37 и 41 %масс.

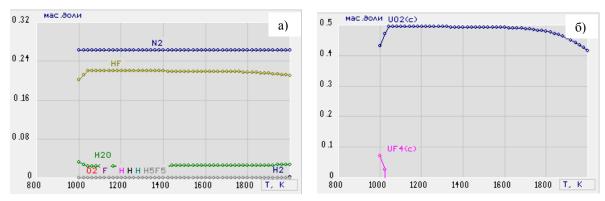


Рис.1. Газообразные (а) и конденсированные (б) продукты плазменной реконверсии О ГФУ при массовой доле воздуха 34 %

Из рисунка 1 следует, что реконверсия ОГФУ с добавлением водорода в воздушной плазме до получения целевого продукта в виде диоксида урана происходит с минимальным образованием газообразных урансодержащих продуктов при массовой доле воздуха, близкой к расчетной (~34 %масс.).

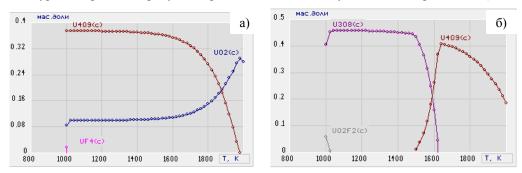


Рисунок 2 — Конденсированные продукты плазменной реконверсии ОГФУ при массовой доле воздуха 37 % (a) и 41 % (б)

Повышение массовой доли воздуха до 37 %масс. (рис. 2a) и 41 %мас. (рис. 2б) не изменяет состав продуктов в газовой фазе, но приводит к существенному изменению состава продуктов в конденсированных фазах с получением нецелевых продуктов в виде U_3O_8 и U_4O_9 ..

Выводы. На основании проведенных расчетов и их анализа можно сделать вывод, что воздушноплазменная реконверсия ОГФУ до диоксида урана является возможным и потенциально эффективным методом решения проблемы накопления и переработки ОГФУ.

На основании полученных результатов, для практической апробации может быть рекомендованы следующие условия для воздушно-плазменной реконверсии ОГФУ до диоксида урана:

- 1) мольное соотношение в исходной смеси: $UF_6:H_2=1:4$;
- 2) массовое отношение фаз: UF $_6$ 64,8 %масс., H $_2$ 1,5 %масс., Воздух 33,7 % масс;
- 3) диапазон рабочих температур: 1400÷1500 К;
- 4) удельные энергозатраты: 0,76 МДж/кг ОГФУ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Management of depleted uranium. Nuclear energy agency, 2001. 59 c.
- 2. Summary of the cost analysis report for the long-term management of depleted UF6. U.S. Department of energy, 1998.
- 3. Larry G. Davis, John Wang. Integrated solution for long-term management of depleted uranium hexafluoride. The new fuel cycle, Texas, 1999.
- 4. Туманов Ю.Н. Плазменные и высокочастотные процессы получения и обработки материалов в ядерном топливном цикле: настоящее и будущее. М.: Физматлит, 2003. 760 с.
- 5. Фэгер Андре. Способ и установка для непосредственного превращения гексафторида урана в оксид урана. Патент FR 2162058 C01G43/025.
- 6. Архипов В.А., Синогина Е.С. Горение и взрывы, опасность и анализ последствий.: Учебное пособие. Часть 1. – Томск: ТГПУ, 2007.
- 7. Бернадинер М.Н., Шурыгин А.П. Огневая переработка и обезвреживание промышленных отходов. М.: Химия, 1990. 304 с.