ХИМИЧЕСКИЙ СОСТАВ ПОЧВЫ И РАСТИТЕЛЬНОСТИ КРУПНОГО НЕФТЕХИМИЧЕСКОГО КОМПЛЕКСА ГОРОДА ТОБОЛЬСКА

А.Ю. Токарева, Е.И. Попова

Научный руководитель: к.б.н. Е.И. Попова Тобольская комплексная научная станция УрО РАН, Россия, г. Тобольск, ул. Академика Ю. С. Осипова, 15, 626152 E-mail: popova-3456@mail.ru

CHEMICAL COMPOSITION OF SOIL AND VEGETATION OF LARGE PETROCHEMICAL COMPLEX OF TOBOLSK

A.Y.Tokareva, E.I. Popova
Scientific Supervisor: Ph.D. E.I. Popova
Tobolsk Complex Scientific Station UD RAS,
Russia, Tobolsk, imeni Akademika Yuriya Osipova street, 15, 626152,
E-mail:popova-3456@mail.ru

Abstract. For the study, sites were selected that were located in the immediate vicinity of the construction site of a large petrochemical complex. The chemical composition of the total phytomass of monitoring sites was determined. The accumulation range, the most accumulated heavy metals and trace elements, varied within the limits: Zn (0,88-5,45); Cd (0.10-0.13); Co (0.20-0.18); Pb (0.42-0.52); Cr (0.14-1.48); Ni (1.72-5.19) mg / kg. The biogenic and salt compositions of the soil were studied. It was revealed that the soils of the plots are non-saline, slightly acidic, biogenic elements are concentrated in the upper horizons.

Введение. В настоящее время главным разрушающим фактором фитоценозов является антропогенный. В результате воздействия данного фактора происходят существенные изменения в растениях. Очень многие фитоценозы испытывают значительную антропогенную нагрузку, в основном вблизи дорог и в зоне влияния промышленных предприятий.

Для определения степени антропогенного воздействия были подобраны мониторинговые участки с разной техногенной нагрузкой. Подбор мониторинговых площадок, расположенных в непосредственной близости от площадки строительства комплекса «ЗапСибНефтехим», осуществлялся с северной и восточной стороны в пределах санитарно-защитной зоны, с учетом распространенных на них экосистем. В результате проведенных исследований были подобраны 3 участка, каждый имеет форму квадрата со стороной 20 м, площадью 400 м².

Материалы и методы исследования. Отбор проб образцов почв и пробоподготовка для количественного химического анализа проведены в соответствии с [1-5]. Подготовка проб общей фитомассы осуществлялась с использованием системы микроволнового разложения speedwave MWS-2 фирмы PerkinElmer (США).

Количественный химический анализ накопления микроэлементов и тяжелых металлов Zn, Cd, Co, Pb, Cr, Ni в общей фитомассе определяли методом индуктивно-связанной плазмы на атомно-эмиссионном спектрометре OPTIMA-7000DV фирмы PerkinElmer (США). Для градуировки

использовали стандартные растворы фирмы PerkinElmer (США).

Результаты. Северный мониторинговый участок (СМУ) (58°16.563'С; 68°28.446'В). Смешанный осиново-березовый лес крупнотравно-осочковый.

Восточный мониторинговый участок (ВМУ) (58°15.905'С; 68°29.737'В). Осинник снытеворазнотравный.

Контрольный участок (КУ) (58°19.662'С; 68°32.961'В). Смешанный осиново-березовый лес крупнотравный.

Почва как депонирующий компонент среды отражает длительность и интенсивность поступления и накопления загрязняющих веществ. Из биогенных элементов в исследуемых пробах почвы определены следующие показатели: нитраты, подвижные соединения фосфора, аммоний обменный. Содержание нитратов на СМУ, ВМУ, КУ не превышает 0,1 мг/кг. Концентрация обменного аммония СМУ в 1,7 раза выше, чем на КУ и достигает 12,8 мг/кг. На ВМУ содержание аммония обменного не превышает 7,6 мг/кг почвы. Таким образом, изменение концентрации обменного аммония можно расположить следующим образом: КУ < ВМУ < СФУ. Обеспеченность почв подвижными формами фосфора СМУ, ВМУ и КУ находится в диапазоне от 43 до 83 мг/кг. Степень обеспеченности доступными фосфатами является низкой по классификации для вытяжек из почв, полученных по методу Кирсанова (таблица 1).

Таблица I Содержание биогенных элементов – нитратов, аммония обменного, фосфора (подвижная форма)

Участки	Нитраты, мг/кг	Аммоний обменный, мг/кг	Фосфор (подвижная форма), мг/кг
СМУ	0,1±0	12,8±1,3	43±9
ВМУ	0,1±0	7,6±1,1	83±17
КУ	0,1±0	7,5±1,1	34±7

Анализ водной вытяжки позволил определить в исследуемых образцах проб почв содержание следующих ионов: карбонат — ионов ${\rm CO_3}^2$, бикарбонат — ионов ${\rm HCO_3}^2$, хлорид — ионов ${\rm CI}^2$, сульфат — ионов ${\rm SO_4}^{2-}$, ионов кальция ${\rm Ca}^{2+}$, магния ${\rm Mg}^{2+}$. Карбонат-ионы ${\rm CO_3}^{2-}$ в исследуемых образцах проб почвы не выявлены.

Исходя из содержания токсичных ионов, в исследуемых образцах проб почвы определены степень и тип засоления. В целом, почва на всех участках относится к незасоленным почвам (таблица 2).

Таблица 2 Анализ водной вытяжки, суммарный эффект (СЭ) токсичных ионов и степень засоления почвы

Участки	Концентрация, мг-экв/100 г почвы						
	HCO ₃ -	CI ⁻	SO ₄ ²⁻	Ca ²⁺	Mg ²⁺	СЭ, мг·экв	Степень засоления почв (по Н.И. Базилевич, Е.И. Панковой)
СМУ	0,03	0,05	0,10	0,25	0,25	0,050	незасоленные
ВМУ	0,08	0,05	0,20	0,13	0,13	0,050	незасоленные
КУ	0,08	0,05	0,13	0,13	0,13	0,066	незасоленные

По соотношению анионов и катионов определяется тип засоления почв. Согласно полученным нами результатам, тип засоления почв на всех исследуемых площадках в пределах ключевых участков – хлоридно-сульфатный. Специфические характеристики обмена у различных видов растений обусловливают их избирательную способность к накоплению одного или нескольких элементов.

Тяжелые металлы занимают особое положение среди других техногенных загрязняющих веществ, поскольку, не подвергаясь физико-химической или биологической деградации, накапливаются в поверхностном слое почв и изменяют их свойства, в течение длительного времени остаются доступными для корневого поглощения растениями и активно включаются в процессы миграции по трофическим цепям. Для выявления антропогенной нагрузки определяли микроэлементный состав общей фитомассы изучаемых мониторинговых участков.

Выводы. Диапазон накопления, наиболее аккумулируемых тяжелых металлов и микроэлементов, варьировал в пределах: Zn (0.88-5.45); Cd (0.10-0.13); Co (0.20-0.18); Pb (0.42-0.52); Cr (0.14-1.48); Ni (1.72-5.19) мг/кг. Наибольшие концентрации наблюдались на CMУ.

На основании результатов анализа общей фитомассы наблюдательные участки выстраиваются в следующий ряд по мере усиления антропогенных нагрузок, в том числе, по содержанию тяжелых металлов: $KY \to BMY \to CMY$.

По накоплению в естественной травянистой растительности металлы выстраиваются в следующий ряд: Zn > Ni > Cr > Pb > Co > Cd.

Почвам, по степени засоления, относятся к незасоленным. Реакция среды солевой вытяжки слабокислая. Биогенные элементы, определенные в ходе исследования, концентрируются в большей степени в верхних горизонтах почвы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Алексеенко В. А., Алещукин Л. В., Беспалько Л. Е. Цинк и кадмий в окружающей среде. М.: Наука, 1992. 199 с.
- 2. Аринушкина, Е.В. Руководство по химическому анализу почв.— М.: Изд-во Московского университета. 1961. 465 с.
- 3. ГОСТ 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб». Охрана природы. Почвы: Сб. ГОСТов. М.: Стандартинформ, 2008. 4 с.
- ГОСТ 17.4.4.02-84 «Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа». Охрана природы. Почвы: Сб. ГОСТов. – М.: Стандартинформ, 2008. – 8 с.
- 5. ГОСТ 26483-85 «Почвы. Приготовление солевой вытяжки и определение ее pH по методу ЦИНАО». Охрана природы. Почвы: Сб. ГОСТов. М.: Стандартинформ, 2008. 6 с.