ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ В ПРОЦЕССЕ 3D-ПЕЧАТИ ТИТАНОВЫХ СПЛАВОВ

А.О.Буйлук, И.О.Акимченко

Научный руководитель: д. ф-м. н. А.В. Панин

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: buyluk97@mail.ru

REGULARITIES OF STRUCTURE FORMATION OF TITANIUM ALLOYS DURING 3D PRINTING

A.O.Buyluk, I.O.Akimchenko

Scientific Supervisor: Dr. P-M. S. A.V. Panin

Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: buyluk97@mail.ru

Abstract. Currently, 3D printing and additive technologies are being given a lot of attention in research centers in the whole world. Since titanium is chemically active metal, electron-beam technologies appear to be the most promising for the development of technology of metal 3D-surfacing of details from alloys based on titanium. In the present study, we performed comparative analysis of the microstructure and mechanical properties of commercially pure titanium and Ti-6Al-4V titanium alloy parts obtained by additive manufacturing.

Введение. Современные темпы развития промышленности требуют выбора технологий производства, обеспечивающие наименьшие затраты и сокращение срок производства. Наряду с новыми и передовыми технологиями можно отметить быстрое развитие аддитивных технологий, позволяющих создавать металлические изделия уникальной формы. Основными методами получения трехмерных металлических изделий в настоящее время являются методы селективного лазерного и электроннолучевого сплавления [1, 2]. Причем, поскольку процесс электронно-лучевого сплавления происходит в вакууме, то это позволяет получать качественные изделия из титана и титановых сплавов, характеризующихся высокой химической активностью при повышенных температурах. Целью работы являлось проведение сравнительного анализа образцов титана ВТ1-0 и ВТ6, полученных прокаткой и методом 3D-печати, а также исследование их термической стабильности.

Материалы и методы. Материалами исследования были выбраны образцы технического титана ВТ1-0 и сплава ВТ6, полученные прокаткой (в состоянии поставки) и методом электронно-лучевого сплавления соответствующего порошка. 3D-печать осуществлялась на установке ЭЛУ-5 (ИФПМ СО РАН, г. Томск). Для исследования термической стабильности 3D-напечатанные образцы подвергали отжигу в вакууме при температуре 900°С в течение 1 часа. Микроструктуру образов изучали на оптическом микроскопе ZEISS AXIOVERT 40 МАТ. Рентгеноструктурный и фазовый анализ проводили на дифрактометре SHIMADZU XRD-7000. Микротвердость измеряли на твердомере ПМТ-3 при нагрузке 50 грамм.

Результаты. На рисунках 1 и 2 представлены изображения микроструктур исследуемых образцов. Микроструктура прокатанного образца титана ВТ1-0 представляет собой равноосные зерна со средним диаметром 50-100 мкм (рис. 1а). В отличие от прокатанных образцов структура 3D- напечатанного

титана ВТ1-0 представляет собой хаотично расположенные пластины, поперечный размер которых достигает 5-10 мкм (рис. 16). Последующий отжиг 3D-напечатанных образцов ВТ1-0 приводит к существенному изменению структуры (рис. 1в). В одних зернах пластины практически исчезают, в других зернах наблюдаются тонкие пластины с одинаковой ориентацией.

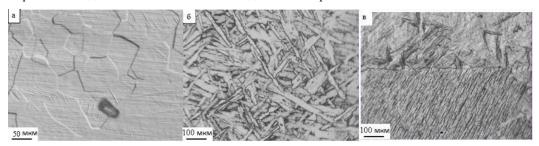


Рис. 1. Оптические изображения микроструктуры образцов технического титана BT1-0, полученных прокаткой (а) и методом 3D-печати (б, в) и подвергнутых последующему отжигу в вакууме при температуре 900 °С в течение 1 часа (в)

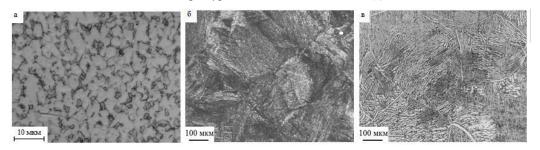


Рис. 2. Оптические изображения микроструктуры образцов титанового сплава BT6, полученных прокаткой (а) и методом 3D-печати (б, в) и подвергнутых последующему отжигу в вакууме при температуре $900 \, \text{C}$ в течение 1 часа (в)

Микроструктура прокатанного образца титанового сплава ВТ6 представляет собой равноосные зерна, размер которых варьируется от 1 до 3 мкм (рис. 2а). При этом незначительная часть зерен имеет пластинчатую морфологию. При 3D-печати образцов из титана ВТ6 образуются равноосные зерна, средний размер которых составляет 200-300 мкм, т.е. на несколько порядков больше, чем в состоянии поставки (рис.2б). Внутри зерен наблюдается пластинчатая морфология, поперечный размер пластин составляет 5-9 мкм. Отжиг 3D-напечатанного образца из титанового сплава ВТ6 приводит к дальнейшему увеличению размеров зерен. Как видно из рис.2в, средний размер зерен достигает 500 мкм. Следует отметить, что поперечные размеры пластин внутри зерен также увеличились.

Микротвердость образцов ВТ1-0 в состоянии поставки составляет 2200 МПа (Таблица 1). В 3Dнапечатанном образце ВТ1-0 микротвердость увеличивается до 2900 МПа и уменьшается при последующем отжиге в вакууме при температуре 900°С в течение 1 часа до 2300 МПа, то есть приближается к микротвердости образца, находящегося в состоянии поставки. Для образцов титана ВТ6, полученных методом 3D-печати, также характерна более высокая микротвердость (4200 МПа) по сравнению с микротвердостью прокатанных образцов ВТ6 (3175 МПа). После отжига при температуре 900°С в вакууме в течение 1 часа микротвердость 3D-напечатанного образца ВТ6 также существенно уменьшается.

Таблица 1 Таблица значений микротвердости и результатов рентгеноструктурного анализа

Образец	Фазы	Содержание фаз, %	Параметры решетки, Å	Твердость, МПа
BT1-0	α	100	a=2,909	2200
поставка			c=4,7679	
BT1-0	α	100	a=2,9521	2900
печать			c=4,6898	
ВТ1-0 отжиг	α	100	a=2,9517	2300
после печати			c=4,6803	
ВТ6 поставка	α	92,5	a=2,9280	3175
			c=4,6628	
	β	7,5	a=3,2469	
ВТ6 печать	α	97	a=2,9339	4200
			c=4,6767	
	β	3	a=3,2383	
ВТ6 отжиг после печати	α	91,1	a=2,9241	3500
			c=4,6751	
	β	8,9	a=3,2223	

Результаты рентгеноструктурного анализа показали, что структура и фазовый состав 3Dнапечатанных образцов титанового сплава BT1-0 полностью соответствуют прокатанным образцам BT1-0. В то же время, в образцах 3D-напечатанного титанового сплава BT6 количество β-Ті не превышает 3%, в то время как в состоянии поставки содержание β-фазы составляет 7,5%. Однако при последующем отжиге образцов 3D-напечатанного сплава BT6 объемная доля β-фазы увеличивается до 8,9%.

Заключение. Образцы технического титана ВТ1-0, полученные методом электронно-лучевого сплавления порошка, состоят из равноосных зерен со средним размером 50-100 мкм, внутри которых выявляются хаотично расположенные пластины α-фазы, поперечный размер которых достигает 5-10 мкм. Последнее обусловливает более высокую микротвердость 3D-напечатанных образцов по сравнению с прокатом. Микроструктура 3D-напечатанных образцов титанового сплава ВТ6 также характеризуется крупными равноосными зернами, имеющими пластинчатую морфологию. Количество β-Ті в образцах ВТ6, полученных методом 3D печати, не превышает 3%, при этом их микротвердость составляет 4200 МПа.

Термический отжиг 3D-напечатанных образцов BT1-0 и BT6 приводит к увеличению среднего размера зерна и изменению поперечных размеров пластин α -фазы, обусловливая существенное снижение их микротвердости. При этом объемная доля β -фазы в образцах напечатанного сплава BT6 увеличивается до 8.9%.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зленко М.А. Аддитивные технологии в машиностроении / М.В. Нагайцев, В.М. Довбыш // пособие для инженеров. М. ГНЦ РФ ФГУП «НАМИ» 2015. 220 с.
- 2. Гончарова О.Н., Бережной Ю.М., Бессарабов Е.Н., Кадамов Е.А., Гайнутдинов Т.М., Нагопетьян Е.М., Ковина В.М. Аддитивные технологии динамично развивающееся производство: Справочник: инженерный вестник № 4.2016.