изменение диаметра контактной трубки существенного влияния на степень превращения и выход продуктов не оказывает, но, т.к. его уве-

СПИСОК ЛИТЕРАТУРЫ

- Schubert P.F., Bayens Ch.A. Development progresses for GTL fuels, specialty products // Oil & Gas J. – 2001. – № 11. – P. 69–73.
- Кравцов А.В., Левашова А.И., Ушева Н.В., Мойзес О.Е. Проблемы комплексного исследования синтеза Фишера-Тропша // Химия и химическая технология на рубеже тысячелетий: Матер. научно-практ. конф. — Томск, 2002. — Т. 2. — С. 65—67.
- Сливинский Е.В., Кузьмин А.Е., Клигер Г.А. Кинетические закономерности синтеза Фишера-Тропша на железно-цеолитном катализаторе в условиях промышленного процесса // Нефтехимия. – 2001. – Т. 41. – № 2. – С. 119–125.

личение приводит к значительному разогреву слоя катализатора, то предлагаемые значения диаметра – 0,02...0,04 м.

- Вытнова Л.А., Сливинский Е.В. Синтез Фишера-Тропша в трехфазной суспензионной системе и проточном реакторе с неподвижным слоем катализатора // Нефтехимия. – 2002. – Т. 42. – № 1. – С. 45–49.
- Ермакова А., Аникеев В.И., Фромент Дж.Ф. Проведение процесса Фишера-Тропша в сверхкритических условиях (влияние неидеальности реакционной смеси на скорость реакции) // Теоретические основы химической технологии. – 2000. – Т. 34. – № 2. – С. 203–211.

УДК 621.316.8:691.372.001.24

РАСЧЕТ РАСПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПО ПОВЕРХНОСТИ НИЗКОТЕМПЕРАТУРНОГО КОМПОЗИЦИОННОГО ЭЛЕКТРООБОГРЕВАТЕЛЯ ДЛЯ ПРЕДПРИЯТИЙ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА

Т.М. Халина

Алтайский государственный технический университет им. И.И. Ползунова. г. Барнаул E-mail: Limb@alt.ru

Получены аналитические зависимости и приведены результаты расчета численных значений распределения температур по поверхности низкотемпературного композиционного электрообогревателя, которые могут быть использованы при проектировании аналогичных изделий в различных областях сельского хозяйства и промышленности.

Широкое использование низкотемпературных (300...400 К) композиционных электрообогревателей (НТКЭ) и обогревательных систем на их основе позволяет осуществить массовое внедрение энергосберегающих технологий на предприятиях агропромышленного комплекса: электрообогрев индукционных счетчиков в щитах раздельного учета электроэнергии, поверхностно-распределительный обогрев молодняка животных и птицы, подогрев зерна на зерноперерабатывающих комплексах, обогрев задвижек, устьев скважин и трубопроводов различного назначения.

Однако, в каждом конкретном случае возникает проблема рационального выбора типа и конструкции НТКЭ, отвечающего широкому спектру требований по обеспечению теплоэлектрофизических характеристик, электробезопасности, экономичности, стойкости к агрессивным средам. В связи с этим предлагается метод расчета распределения температуры по поверхности НТКЭ в зависимости от его конструктивных параметров.

Распределение температуры по поверхности электрообогревателя (рис. 1, *a*) является его важнейшей технической характеристикой.

Расчёт тепловой проводимости рассматриваемой системы [1] позволяет получить ряд необходимых параметров для оценки распределения температуры по поверхности электрообогревателя, но не решает до конца поставленную задачу.

Определение распределения температуры по всей поверхности электрообогревателя приводит к довольно большому численному массиву. Для практических целей обычно достаточно определить разность температур ΔT , ΔT_1 , ΔT_2 , ΔT_3 , ΔT_4 между характерными точками соответственно A_2 и A_3 , A_{∞} и A_4 , A_5 и A_{∞} , A_6 и A_5 , A_7 и A_6 (рис. 1, δ).

В связи с этим цель настоящей работы – строгое решение поставленной задачи и вычисление на его основе значений разностей указанных температур в широком диапазоне изменения геометрических параметров системы.

Для расчёта распределения температуры по поверхности указанной системы при стационарном процессе теплового излучения воспользуемся методикой, изложенной в работе [2], основанной на непосредственном определении напряжённости поля и конформных преобразований с учётом математической аналогии между потенциальными полями.

Рис. 1. Плоскопараллельная система: а) исходная система тел; б) расчетная модель; в) система тел в отображенной плоскости; 1— горячее тело; 2— холодная поверхность тела; 3— теплоизолирующий материал

Примем, как и в работе [1], температуру горячего тела T_1 , холодного T_2 , разность температур между ними ΔT , коэффициент теплопроводности изолирующего материала λ , а коэффициент теплопроводности вне изолирующего материала $\lambda_1=0$.

По оси x (рис. 1, δ) введём непроницаемую плоскость, примем заштрихованную часть расчётной модели за часть плоскости комплексного переменного Z и конформного, отобразим на неё верхнюю полуплоскость нового комплексного переменного ζ (рис. 1, δ) при соответствии точек исходной и отображённой плоскостей. Система уравнений, связывающая конструктивные размеры расчётной модели с координатами точек a_1-a_4 в отображённой плоскости, полученной в работе [1] с помощью интеграла Кристоффеля-Шварца, имеет вид

$$\frac{b}{a} = \frac{I_4}{I_1 + I_3};$$
 (1)

$$\frac{a}{l} = \frac{I_1 + I_3}{I_1 + I_3 + I_5};$$
 (2)

$$\frac{h}{l} = \frac{I_6}{I_1 + I_3 + I_5};$$
(3)

$$I_1 + I_3 = \int_0^{a_1} \sqrt{\frac{(a_1^2 - \xi^2)}{(a_2^2 - \xi^2)(a_3^2 - \xi^2)(a_4^2 - \xi^2)}} d\xi; \qquad (4)$$

$$I_4 = \int_{a_1}^{a_2} \sqrt{\frac{(\xi^2 - a_1^2)}{(a_2^2 - \xi^2)(a_3^2 - \xi^2)(a_4^2 - \xi^2)}} d\xi;$$
(5)

$$I_{5} = \int_{a_{2}}^{a_{3}} \sqrt{\frac{(\xi^{2} - a_{1}^{2})}{(\xi^{2} - a_{2}^{2})(a_{3}^{2} - \xi^{2})(a_{4}^{2} - \xi^{2})}} d\xi;$$
(6)

$$I_{6} = \int_{a_{3}}^{a_{4}} \sqrt{\frac{(\xi^{2} - a_{1}^{2})}{(\xi^{2} - a_{2}^{2})(\xi^{2} - a_{3}^{2})(a_{4}^{2} - \xi^{2})}} d\xi.$$
 (7)

В уравнениях (4–7) интегралы являются гиперэллиптическими и должны находиться численными методами. Уравнениями (1–3) решена геометрическая часть задачи. Рассмотрим физическую сторону задачи. Модуль потока тепла в точках ξ плоскости расположения пластин $h_{\eta=0}(\xi)$ и разность температур ΔT между первым и вторым телами определяют по формулам [1–3]:

$$h_{|\eta=0}(\xi) = \frac{A}{\sqrt{\prod_{k=1}^{n} |\xi - a_{k}| |\xi - a_{k}'|}} = \frac{A}{\sqrt{|\xi - a_{2}^{2}| |\xi - a_{3}| |\xi - a_{4}|}};$$
(8)

$$\Delta T = \int_{a_k}^{a_{k+1}} h_{|\eta=0}(\xi) d\xi = A \int_{a_2}^{a_3} \frac{d\xi}{\sqrt{|\xi - a_2^2||\xi - a_3||\xi - a_4|}}, \quad (9)$$

где a_k , a'_k – координаты краев k-ого тела (пластины); A – постоянная; n – число электродов.

Из ур. (9) следует

$$A = \frac{\Delta T}{I},\tag{10}$$

где
$$I = \int_{a_2}^{a_3} \frac{d\xi}{\sqrt{(\xi^2 - a_2^2)(a_3 - \xi)(a_4 - \xi)}}.$$
 (11)

Так как при конформных преобразованиях температура в сходственных точках остаётся неизменной, то разность температур ΔT между точками A'_2 и A'_3 (рис. 1, ϵ) соответствует разности температур между точками A_2 и A_3 (рис. 1, ϵ).

Аналогично с учётом выражения (10) относительные разности температур находят по формулам

$$\frac{\Delta T_1}{\Delta T} = \frac{I_7}{I}; \tag{12}$$

$$\frac{\Delta T_2}{\Delta T} = \frac{I_8}{I}; \tag{13}$$

$$\frac{\Delta T_3}{\Delta T} = \frac{I_9}{I}; \tag{14}$$

$$\frac{\Delta T_4}{\Delta T} = \frac{I_{10}}{I},\tag{15}$$

где

$$I_7 = \int_{a_4} \frac{1}{\sqrt{(\xi^2 - a_2^2)(\xi - a_3)(\xi - a_4)}};$$
 (16)

dξ

ĩ

$$I_8 = \int_{a_4} \frac{d\zeta}{\sqrt{(\xi^2 - a_2^2)(\xi + a_3)(\xi + a_4)}};$$
 (17)

$$I_9 = \int_{a_3}^{a_4} \frac{d\xi}{\sqrt{(\xi^2 - a_2^2)(\xi + a_3)(\xi + a_4)}};$$
 (18)

$$I_{10} = \int_{a_2}^{a_3} \frac{d\xi}{\sqrt{(\xi^2 - a_2^2)(\xi + a_3)(\xi + a_4)}} \,.$$
(19)

Интегралы, определяемые выражениями (11), (16) и (19), могут быть приведены к нормальной форме и записаны в виде

$$I = \frac{2}{\sqrt{(a_4 - a_2)(a_2 + a_3)}} K(k) ; \qquad (20)$$

$$I_7 = \frac{2}{\sqrt{(a_4 - a_2)(a_2 + a_3)}} F(\varphi, k) ; \qquad (21)$$

$$I_{10} = \frac{2}{\sqrt{(a_4 - a_2)(a_2 + a_3)}} F(\varphi_1, k) , \qquad (22)$$

где K(k), $F(\varphi,k)$ и $F(\varphi_1,k)$ – полный и неполные эллиптические интегралы первого рода с модулем

$$k = \sqrt{\frac{(a_4 + a_2)(a_3 - a_2)}{(a_4 - a_2)(a_3 + a_2)}}$$
(23)

и аргументами

$$\varphi = \arcsin \sqrt{\frac{a_2 + a_3}{a_2 + a_4}}; \tag{24}$$

$$\varphi_1 = \arcsin \sqrt{\frac{(a_4 - a_2)(a_3 - a_2)}{(a_4 + a_2)(a_3 + a_2)}}.$$
 (25)

С учётом соотношений (20–22) уравнения (12–15) примут вид:

$$\frac{\Delta T_1}{\Delta T} = \frac{F(\varphi, k)}{K(k)};$$
(26)

$$\frac{\Delta T_2}{\Delta T} = \frac{\sqrt{(a_4 - a_2)(a_2 + a_3)}}{2} \cdot \frac{I_8}{K(k)};$$
(27)

$$\frac{\Delta T_3}{\Delta T} = \frac{\sqrt{(a_4 - a_2)(a_2 + a_3)}}{2} \cdot \frac{I_9}{K(k)};$$
(28)

$$\frac{\Delta T_1}{\Delta T} = \frac{F(\varphi_1, k)}{K(k)}.$$
(29)

Определив на основании ур. (1–3) по заданным конструктивным размерам координаты точек a_1-a_4 в отображённой плоскости, а также содержащие в ур. (26–29) интегралы и выполнив необходимые вычисления в указанных выражениях, найдем относительные изменения температур $\Delta T_1/\Delta T$... $\Delta T_4/\Delta T$ между характерными точками электрообогревателя.

Рассмотрим некоторые параметры системы при предельных значениях размера h-b и h=b (рис. 2). Если $h-b=\infty$, то $a_4=\infty$ и, как следует из выражений (23) и (24), k=1, $\varphi=0$, следовательно $F(\varphi,k)=0$, $K(k)=\infty$ и согласно ур. (26) $\Delta T_1/\Delta T=0$. Аналогично при этих условиях и $\Delta T_2/\Delta T=0$.

Из приведённых данных следует, что при достаточно большом расстоянии h-b температура точки A_5 стремится к температуре T_2 поверхности A_3A_4 холодного тела.

Если h-b=0, то расчетную модель системы (рис. 2, *a*) можно рассматривать в виде двух независимых частей — правой и левой.

Как и ранее, примем заштрихованные части расчётной модели за части плоскостей комплекс-

Рис. 2. Система при b=h: a) расчётная модель; б) система тел в отображённой плоскости для левой части системы; в) система тел в отображённой плоскости для правой части системы: 1 — горячее тело; 2 — холодная поверхность тела; 3 — теплоизолирующий материал

ного переменного Z (рис. 2, a) и конформно отобразим на них верхние полуплоскости новых комплексных переменных ζ (рис. 2, δ , a) при соответствии точек исходных и отображённых плоскостей.

Для расчётной модели (рис. 2, *a*) обозначения разности температур ΔT , ΔT_3 и ΔT_4 сохраняются, разности температур между точками A_1 и A_4 , A_8 и A_5 обозначим через $\Delta T_1'$ и $\Delta T_2'$.

Проанализируем сначала разности температур для правой части системы.

В соответствии с общими формулами (8) и (9) модуль потока тепла в точках ξ плоскости ζ (рис, 2, *в*) и разности температур ΔT и ΔT_1 ' находят-ся следующим образом:

$$h_{\eta=0}(\xi) = \frac{A}{\sqrt{\left|\xi^2 - a_1^2\right| \left|\xi^2 - a_2^2\right|}};$$
(30)

$$\Delta T = A \int_{-a_1}^{a_1} \frac{d\xi}{\sqrt{(a_1^2 - \xi^2)(a_2^2 - \xi^2)}} = A \left[\int_{-a_1}^{0} \frac{d\xi}{\sqrt{(a_1^2 - \xi^2)(a_2^2 - \xi^2)}} + \int_{0}^{a_1} \frac{d\xi}{\sqrt{(a_1^2 - \xi^2)(a_2^2 - \xi^2)}} + \int_{0}^{a_1} \frac{d\xi}{\sqrt{(a_1^2 - \xi^2)(a_2^2 - \xi^2)}} \right] = 2A \int_{0}^{a_1} \frac{d\xi}{\sqrt{(a_1^2 - \xi^2)(a_2^2 - \xi^2)}};$$

$$\Delta T_1 = A \left[\int_{-\infty}^{-a_2} \frac{d\xi}{\sqrt{(\xi^2 - a_1^2)(\xi^2 - a_2^2)}} + \int_{a_2}^{\infty} \frac{d\xi}{\sqrt{(\xi^2 - a_1^2)(\xi^2 - a_2^2)}} \right] =$$
(31)

$$=2A\int_{a_2}^{\infty} \frac{d\xi}{\sqrt{(\xi^2 - a_1^2)(\xi^2 - a_2^2)}} .$$
 (32)

Приведём в выражениях (31) и (32) интегралы к нормальной форме

$$\Delta T = \Delta T_1' = \frac{2A}{a_2} K(k), \qquad (33)$$

где K(k) — полный эллиптический интеграл первого рода с модулем $k=a_1/a_2$.

Поскольку слагаемые в формулах (31) и (32) равны между собой, с учётом последнего равенства легко определить, что разности температур на участках A_2 - A_0 , A_0 - A_3 , A_1 - A_{∞} , A_{∞} - A_4 равны $\Delta T/2$. Это следует и из физических представлений при рассмотрении указанной системы.

Аналогично для левой части системы:

$$h_{\eta=0}(\xi) = \frac{A}{\sqrt{|\xi - a_1||\xi - a_2|}};$$
(34)

$$\Delta T_{2}' = A \left[\int_{-\infty}^{-a_{2}} \frac{d\xi}{\sqrt{(a_{1} - \xi)(a_{2} - \xi)}} + \int_{a_{2}}^{\infty} \frac{d\xi}{\sqrt{(\xi - a_{1})(\xi - a_{2})}} \right]; (35)$$

$$\Delta T_3 = A \int_{-a_2}^{a_1} \frac{d\xi}{\sqrt{(a_1 - \xi)(a_2 - \xi)}} ; \qquad (36)$$

$$\Delta T_4 = A \int_{-a_1}^{a_1} \frac{d\xi}{\sqrt{(a_1 - \xi)(a_2 - \xi)}} .$$
(37)

Так как разность температур $\Delta T'$ между точками *A*'₇ и *A*'₈ (*A*₇ и *A*₈) равна нулю, то

$$\Delta T' = \Delta T_2' + \Delta T_3 + \Delta T_4 = 0. \tag{38}$$

Поскольку интегралы, входящие в ур. (35–37), не равны нулю, то из формулы (38) с учётом выражений (35–37) следует, что *A*=0 и, следовательно,

$$\Delta T_2 = \Delta T_3 = \Delta T_4 = 0. \tag{39}$$

Из равенства (39) следует, что при h-b=0 температура на участках A_7-A_6 , A_6-A_5 , A_5-A_8 равна температуре T_1 резистивного материала 1 электрообогревателя.

Очевидно, что при малом отношении (h-b)/l на участке A_{∞} - A_5 будет также приблизительно сохраняться температура T_1 , а резкое уменьшение температуры от T_1 до T_2 будет происходить на участке A_{∞} - A_4 . Указанные выводы подтверждаются результатами расчётов, выполненных на ПЭВМ на языке программирования Паскаль и представленных в табл. 1–4.

Таблица 1. Значения $\Delta T_1 / \Delta T$ участков А $_{\infty}$ -А $_4$ и А $_2$ -А $_3$

h/l	a/l	Значения $\Delta T_1/\Delta T$ при <i>b/h</i> , равном				
		0,1	0,2	0,3	0,4	0,5
	0,1	0,588976	0,653322	0,709148	0,761292	0,811569
	0,2	0,642045	0,704756	0,752007	0,801748	0,849947
1,0	0,3	0,680098	0,733742	0,783534	0,831504	0,877786
	0,4	0,708818	0,759575	0,807669	0,854221	0,898654
	0,5	0,730746	0,779433	0,826308	0,871684	0,914381
	0,1	0,426199	0,497386	0,563633	0,629730	0,697898
	0,2	0,467915	0,535528	0,600624	0,666669	0,734647
1,5	0,3	0,499265	0,564506	0,628949	0,695098	0,763313
	0,4	0,523667	0,587199	0,651295	0,717645	0,786002
	0,5	0,542470	0,604967	0,668957	0,735558	0,803975
	0,1	0,307310	0,374826	0,442363	0,514376	0,592529
	0,2	0,337464	0,403742	0,472033	0,545819	0,626183
2,0	0,3	0,360676	0,426178	0,495230	0,570520	0,652644
	0,4	0,379022	0,444001	0,513820	0,590437	0,673991
	0,5	0,393431	0,458103	0,528690	0,606489	0,691198
	0,1	0,220529	0,279872	0,343498	0,415784	0,498868
	0,2	0,241577	0,301060	0,366569	0,441766	0,528325
2,5	0,3	0,257965	0,317703	0,384837	0,462444	0,551779
	0,4	0,271010	0,331040	0,399640	0,479301	0,570901
	0,5	0,281313	0,341683	0,411603	0,492997	0,586437
	0,1	0,157511	0,207473	0,264600	0,333458	0,417018
	0,2	0,171985	0,222775	0,282288	0,354494	0,442356
3,0	0,3	0,183313	0,234884	0,296419	0,371552	0,462690
	0,4	0,192391	0,244668	0,307959	0,385483	0,479365
	0,5	0,199553	0,252522	0,317353	0,396743	0,493914

Например, при h/l=1, a/l=0,5 и b/h=(h-b)/l=0,5значения $\Delta T_1/\Delta T=0,914381$; $\Delta T_2/\Delta T=0,073973$; $\Delta T_3/\Delta T=0,008578$; $\Delta T_4/\Delta T=0,005106$.

В практических конструкциях электрообогревателей наиболее важно выбрать такие его

конструктивные размеры, при которых относительные разности температур $\Delta T_3/\Delta T$ и $\Delta T_4/\Delta T$ были бы малы. Так как для электрообогревателей обычно выбираются отношения $a/l \ge 0.3$; $b/l \ge 0.5$, то из данных табл. 3 и 4 нетрудно определить, что при указанных условиях $(h-b)/l \le 0.5$ значения $\Delta T_3/\Delta T \le 1.23$ %, а $\Delta T_4/\Delta T \le 1.24$ %; если же $a/l \ge 0.3$; $b/l \ge 1$, а $(h-b)/l \le 1$ значения $\Delta T_3/\Delta T \le 15.6$ %, а $\Delta T_4/\Delta T \le 1.8$ %, причём указанное изменение $\Delta T_3/\Delta T$ происходит в основном на участке h-b, примыкающем к точке A_5 .

Приведённые данные позволяют проектировать электрообогреватели с заданным распределением температуры по его рабочей поверхности.

Таблица 2. Значения $\Delta T_2 / \Delta T$ участков A_{∞} - A_5 и A_2 - A_3

h/l	a/l	Значения $\Delta T_2/\Delta T$ при <i>b/h</i> , равном				
		0,1	0,2	0,3	0,4	0,5
	0,1	0,141498	0,148332	0,147876	0,140662	0,126513
	0,2	0,150065	0,151462	0,144837	0,131701	0,111697
1,0	0,3	0,154120	0,150257	0,139280	0,121528	0,097455
	0,4	0,155464	0,147515	0,132679	0,111432	0,084733
	0,5	0,155146	0,143842	0,125972	0,102201	0,073973
	0,1	0,138503	0,155622	0,166000	0,169538	0,164587
	0,2	0,150472	0,163884	0,170383	0,169274	0,158693
1,5	0,3	0,158839	0,169073	0,172160	0,167003	0,151589
	0,4	0,164818	0,172248	0,172347	0,163709	0,144276
	0,5	0,169001	0,174016	0,171578	0,160045	0,137374
	0,1	0,113871	0,135425	0,153226	0,166907	0,174053
	0,2	0,124423	0,144215	0,160225	0,171379	0,174595
2,0	0,3	0,132338	0,150602	0,164984	0,173825	0,173503
	0,4	0,138413	0,155317	0,168241	0,175013	0,171558
	0,5	0,143023	0,158748	0,170424	0,175415	0,169263
	0,1	0,086708	0,108248	0,129101	0,149171	0,166135
	0,2	0,094737	0,115714	0,136192	0,155441	0,170383
2,5	0,3	0,100914	0,121405	0,141495	0,159907	0,172902
	0,4	0,105766	0,125823	0,145550	0,163165	0,174343
	0,5	0,109537	0,129230	0,148649	0,165542	0,175091
	0,1	0,063654	0,082977	0,103831	0,126665	0,149918
	0,2	0,069406	0,088785	0,110034	0,133083	0,155817
3,0	0,3	0,073881	0,093313	0,114854	0,138045	0,160071
	0,4	0,077442	0,096915	0,118690	0,141908	0,163222
	0,5	0,080230	0,099762	0,121740	0,144938	0,165945

Выполненные расчеты были использованы при проектировании и производстве НТКЭ на основе бутилкаучука и технического углерода промышленных марок. Система обогрева трехфазных счетчиков в щитах раздельного учета электроэнергии на основе разработанных электрообогревателей внедрена в ОАО "Первомайское Агропромэнерго" Алтайского края и при участии регионального центра ресурсосбережения Томского политехнического университета на предприятиях агропромышленного комплекса Томской области.

СПИСОК ЛИТЕРАТУРЫ

 Евстигнеев В.В., Халина Т.М. Расчёт тепловой проводимости между длинной пластиной, размещённой в прямоугольном теплоизоляторе, и телом с плоской поверхностью // В сб. трудов СО АИН РФ. – Барнаул: Изд-во АлтГТУ, 2000. – Вып. 1. – С. 15–22.

Таблица 3. Значения $\Delta T_3 | \Delta T$ участков $A_6 - A_5$ и $A_2 - A_3$

h/l	a/l	Значения $\Delta T_3/\Delta T$ при <i>b/h</i> , равном				
		0,1	0,2	0,3	0,4	0,5
	0,1	0,039252	0,037943	0,033309	0,026516	0,018765
	0,2	0,042680	0,039802	0,032145	0,023680	0,015098
1,0	0,3	0,045896	0,040026	0,031222	0,021402	0,012345
	0,4	0,049356	0,041293	0,030569	0,019549	0,010224
	0,5	0,053322	0,042893	0,030187	0,018046	0,008578
	0,1	0,140905	0,144256	0,133223	0,111716	0,083532
	0,2	0,154667	0,151035	0,133067	0,105667	0,073964
1,5	0,3	0,167109	0,157189	0,132967	0,100536	0,065942
	0,4	0,179463	0,163297	0,133029	0,096051	0,059226
	0,5	0,192470	0,169528	0,133174	0,092029	0,053544
	0,1	0,266662	0,283413	0,270310	0,234637	0,183603
	0,2	0,292514	0,297732	0,272986	0,227055	0,168577
2,0	0,3	0,315384	0,310148	0,274896	0,220202	0,155939
	0,4	0,337096	0,321476	0,276198	0,213718	0,144935
	0,5	0,358376	0,331838	0,276760	0,207401	0,135237
	0,1	0,386260	0,420808	0,410114	0,365176	0,295311
	0,2	0,421918	0,441224	0,415426	0,357258	0,277304
2,5	0,3	0,452995	0,458341	0,419005	0,349602	0,261803
	0,4	0,481645	0,473118	0,421029	0,341912	0,247989
	0,5	0,508584	0,485594	0,421454	0,334122	0,235750
	0,1	0,488252	0,540597	0,534655	0,485625	0,403853
	0,2	0,530499	0,564698	0,541601	0,476495	0,384774
3,0	0,3	0,566876	0,584359	0,546028	0,470164	0,368087
	0,4	0,599641	0,600585	0,548223	0,462009	0,353130
	0,5	0,629553	0,613457	0,548215	0,453843	0,339127

Таблица 4. Значения $\Delta T_4 | \Delta T$ участков $A_7 - A_6$ и $A_2 - A_3$

h/l	a/l	Значения $\Delta T_4/\Delta T$ при <i>b/h</i> , равном					
		0,1	0,2	0,3	0,4	0,5	
	0,1	0,230274	0,160403	0,109667	0,071529	0,043153	
	0,2	0,165211	0,103981	0,071011	0,042870	0,023259	
1,0	0,3	0,119886	0,075975	0,045964	0,025566	0,012414	
	0,4	0,086363	0,051617	0,029083	0,014798	0,006389	
	0,5	0,060786	0,033833	0,017533	0,008069	0,003067	
	0,1	0,294393	0,202735	0,137144	0,089016	0,053983	
	0,2	0,226947	0,149552	0,095926	0,058390	0,032695	
1,5	0,3	0,174787	0,109232	0,065923	0,037363	0,019156	
	0,4	0,132053	0,077255	0,043329	0,022596	0,010496	
	0,5	0,096059	0,051488	0,026291	0,012369	0,005106	
	0,1	0,312157	0,206336	0,134101	0,084080	0,049815	
	0,2	0,245598	0,154311	0,094757	0,055747	0,030645	
2,0	0,3	0,191602	0,113072	0,064891	0,035454	0,017914	
	0,4	0,145469	0,079205	0,041741	0,020831	0,009516	
	0,5	0,105171	0,051312	0,024126	0,010695	0,004302	
	0,1	0,306503	0,191072	0,117287	0,069869	0,039687	
	0,2	0,241768	0,142001	0,081812	0,045535	0,023987	
2,5	0,3	0,188126	0,102551	0,054663	0,028048	0,013516	
	0,4	0,141580	0,070018	0,033780	0,015622	0,006767	
	0,5	0,100566	0,043493	0,018294	0,007339	0,002723	
	0,1	0,290584	0,168953	0,096914	0,054251	0,029211	
	0,2	0,228110	0,123742	0,066078	0,035928	0,017053	
3,0	0,3	0,175929	0,087443	0,042699	0,020240	0,009152	
	0,4	0,130526	0,057832	0,025128	0,010600	0,004283	
	0,5	0,090664	0,034259	0,012691	0,004476	0,001014	

- Евстигнеев В.В., Пугачев Г.А., Халина Т.М., Халин М.В. Расчет и проектирование низкотемпературных композиционных электрообогревателей. — Новосибирск: Наука, 2001. — 168 с.
- Халина Т.М. Расчет тепловой проводимости в одной несимметричной плоскопараллельной системе тел // Известия вузов. Строительство. – 2002. – № 7. – С. 141–146.