АНАЛИЗ УПРУГО-НАПРЯЖЕННОГО СОСТОЯНИЯ ГРАНИЦ НАНОКРИСТАЛЛОВ В РАМКАХ ДИСКЛИНАЦИОННОГО ПОДХОДА

И.И. Суханов

Научный руководитель: профессор, д.ф.-м.н. А.Н. Тюменцев Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050 E-mail: suhanii@mail.ru

ANALYSIS OF THE ELASTIC-STRESSED STATE OF NANOCRYSTALS BORDERS WITHIN THE FRAMEWORK OF THE DISCLINATION APPROACH

I.I. Sukhanov

Scientific Supervisor: Prof., Dr. A.N. Tyumentsev Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050 E-mail: suhanii@mail.ru

Abstract. The results of a theoretical analysis of the elastic-stressed state and the distribution of elastic energy in nanostructured metallic materials in the vicinity of nanograin boundaries with a high density of partial disclinations are presented. The features of the distribution of the stress fields of disclinational grain-boundary configurations as a function of the size of nanograins are determined taking into account the superposition of these stresses during the screening of disclination pile-ups. It's found that the maximum values of the main components of the stress tensor are achieved only in the disclination planes $P \approx E/25$, and the gradients of these stresses are characterized by the maximum values at the nodal points $\partial P/\partial x \approx 0.08 \text{ E mm}^{-1}$. It's shown that the local energy maxima are a characteristic feature of the distribution of the specific elastic energy of these configurations, which can be the cause of the physical broadening of the nanograin boundaries.

Введение. Границы зерен являются одним из важнейших элементов дефектной субструктуры поликристаллических материалов. Они определяют многие фундаментальные свойства металлов, такие как, прочность и пластичность. Особую важность они приобретают в процессах пластической деформации разрушения нанокристаллических материалов.

В работе [1] предложена структурная модель субмикрокристалла, учитывающая наличие структурные состояния с высокой континуальной плотностью дефектов (дислокаций и дисклинаций) в объеме и на границах субмикрокристаллов. В этой модели, помимо областей с высокой континуальной плотностью дефектов или высокими значениями кривизны и ротора кривизны кристалла, имеется высокая плотность границ, заполненных плоскими скоплениями непрерывно распределенных частичных дисклинаций. В настоящей работе на основе этой модели в рамках континуального подхода проводится теоретическое исследование особенностей упруго – напряженного состояния и распределения упругой энергии на наномасштабном структурном уровне.

Материалы и методы исследования. В рамках континуального подхода использовалась структурная модель границ нанозерен, в которой дисклинационный заряд распределен и скомпенсирован по контуру зерна гексагональной формы. В качестве носителей такого заряда были выбраны частичные

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

клиновые дисклинации. Расчет полей напряжений и энергий проводился в программной среде Maple 17 с использованием явного вида тензора напряжений таких дисклинаций [2].

Результаты. Особенности распределения зернограничных дисклинаций определяются двумя условиями (рисунок 1):

- гексагональное зерно задается системой плоских дисклинационных скоплений разных знаков, формирующих дипольные конфигурации;

 пространственное распределение дисклинаций носит нерегулярный характер и описывается тремя областями: последовательное равномерное увеличение/уменьшение расстояния между дефектами (область I/III рисунок 1), эквидистанционная область II с фиксированным расстоянием между зернограничными дисклинациями.

Выбор такого дисклинационного распределения обусловлен наличием высоких значений кривизны и ротора кривизны кристаллической решетки. Величина вектора Франка в ходе вычислительных экспериментов не менялась и составляла $\omega \approx 1^\circ$.

Рис. 1. Схема распределение зернограничных дисклинаций в зерне гексагональной формы (a); пространственное распределение давления P = (σ_{xx} + σ_{yy} + σ_{zz})/3 (б) и компоненты σ_{xy} тензора напряжений (в) зерна с размерами R = 60 нм

Теоретический анализ упруго – напряженного состояния нанозерна размером R = 100 нм показал, что поля напряжений характеризуются сложной топологией и локализованы в области расположения частичных дисклинаций (рисунок 2 а). Это является результатом их суперпозиции при экранировке дисклинационных скоплений. Как видно из рисунка 2 а, максимальные значения главных компонент тензора напряжений достигаются в плоскостях залегания дисклинаций $P = Tr(\sigma_{ii})/3 = (\sigma_{xx} + \sigma_{yy} + \sigma_{zz})/3 \approx E/25$, при этом градиенты напряжений характеризуются максимальными величинами в узловых точках $\partial P/\partial x \approx 0.08 \ E$ нм⁻¹ (E – модуль Юнга). Другая важная особенность поля напряжений нанозерен в рамках данной дисклинационной модели заключается в том что, значительная часть сдвиговых компонент тензора напряжений локализована внутри физического размера зерна (рисунок 2 б).

При уменьшении размера зерна величина полей напряжений уменьшается (рисунок 2 в, г): для нанозерна размером R = 60 нм диагональные компоненты тензора напряжений достигают значений $P \approx E/40$, сдвиговые – $\sigma_{xy}/E \approx 0.01$.

28

288 ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Для оценки устойчивости дисклинационной модели дефектной субструктуры границы нанозерна проведен сравнительный анализ распределения удельной упругой энергии в зависимости от его размера. Результаты такого анализа представлены на рисунке 3. Из этих расчетов следует, что в рамках этой модели рассматриваемые конфигурации зернограничных дисклинаций обладают локальным энергетическим максимумом, который является характерной особенностью распределения удельной упругой энергии. Этот максимум, во-первых, можно интерпретировать как своеобразный энергетический барьер, в котором локализуется значительная часть упругой энергии; во-вторых, приводит к увеличению физической ширины границы нанокристалла. Величина максимума зависит от размера зерна и для зерна R = 60 нм составляет (W/L)_{max} = 0,016 Дж/нм² (рисунок 3 б кривая 1).

Рис. 2. Пространственное распределение упругой энергии в зерне размером R = 100 нм (a) и сравнение его проекций (б) на плоскость y = 0 для зерна R = 100 нм (кривая 1) и R = 60 нм (кривая 2)

Заключение. На основе теоретического анализа упруго – напряженного состояния дисклинационных зернограничных конфигураций выявлены особенности распределения полей напряжений в них в зависимости от размера зерен нанокристаллов как результат суперпозиции этих напряжений в процессе экранировки дисклинационных скоплений. Характер и условия распределения полей напряжений и энергий свидетельствует о важной роли масштабного фактора, который определяет как геометрию границ зерен, так и особенности энергетического максимума. Предполагается, что такой максимум может быть причиной увеличения физической ширины границ зерен нанокристаллов с высокой плотностью частичных дисклинаций.

Исследование выполнено за счет гранта Российского научного фонда (проект №17-19-01374).

СПИСОК ЛИТЕРАТУРЫ

- Тюменцев А.Н. Структурные состояния с высокой кривизной кристаллической решетки в субмикрокристаллических и нанокристаллических металлических материалах / А.Н. Тюменцев, И.А. Дитенберг // Известия высших учебных заведений. Физика. – 2011. – Т. 54, № 9. – С. 26–36.
- Владимиров В. И. Дисклинации в кристаллах / В.И. Владимиров, А.Е. Романов //– Л.: наука, 1986. – 223 с.