- 4. Шарипов Р.А., Сидоров Г.М., Зиннатуллин Р.Р., Дмитриев Ю.К. Роль процесса каталитического крекинга в производстве высокооктановых автомобильных бензинов. Современные проблемы науки и образования. 2015. № 1; URL: http://www.science-education.ru/121-18061 (дата обращения: 18.03.2018).
- 5. Ишмаева Э.М., Сидоров Г.М. Гидроочистка бензиновой фракции процесса каталитического крекинга и пути ее развития в нефтепереработке. Актуальные проблемы науки и техники-2015. /Материалы VIII Международной научно-практической конференции молодых ученых. Том І. –Уфа: Изд-во УГНТУ, 2015. С.242-244.
- 6. FernandoR. P. V.; Документальная информация по структуре и состав SONANGOLREFINARIADELUANDA, 2013.
- 7. Мулдер М.; Введение в мембранную технологию, 1999-513 с.
- 8. Дытнерский Ю. И., Брыков В. П., Каграманов Г. Г.; мембранное разделение газов М; химия, 1991-344 с.
- 9. Мулдер М., Введение в мембранную технологию. -М.: Мир, 1999.
- 10.Хванг С.Т., Каммермейер К. Мембранные процессы разделения. М.: Химия, 1981,
- 11. Дытнерский Ю. И. Мембранные процессы разделения жидких смесей. М.: Химия, 1975.
- 12.Baker R. W. Future directions of membrane gas separation technology // End. Eng. Chem. Res. 2002. No. 41. P. 1393–1411.

ОПРЕДЕЛЕНИЕ ФИЗИКО – МЕХАНИЧЕСКИХ СВОЙСТВ КАРБАМИДА

С.Д. Исмоилов

Научный руководитель: Горлушко Дмитрий Александрович, к.х.н., доцент

Национальный исследовательский Томский политехнический университет

Карбамид (мочевина) — химическое соединение диамид угольной кислоты с формулой (NH_2) $_2CO$. Главным образом применяется в качестве азотного удобрения. Показатели качества минеральных удобрений определяются совокупностью тесно связанных друг с другом характеристик, таких как: содержание питательных веществ,

гигроскопичность, гранулометрический (фракционный) состав, прочность гранул, насыпная плотность и другие. Нормы по показателям качества устанавливаются соответствующими нормативнотехническими документами на минеральные удобрения [1, 2, 3,4].

Целью работы является определение основных показателей качества карбамида (NH_2)₂CO.

В качестве объекта исследования был выбран карбамид, который производится АО «ФосАгро – Череповец» и АО «Farg`onaazot». При проведении исследований определялось наличие влаги и статическая прочность карбамида.

Для каждого вида удобрения или других неорганических веществ выбирается подходящий метод определения влажности в зависимости от свойств удобрения, а также характера распределения влаги в веществе. В соответствии с нормативными документами [1] содержание влаги в карбамиде не должно превышать 0,3%.

Для определения влаги в карбамиде использован метод высушивания в сушильном шкафу [2,5].

Вычисляем абсолютную и относительную влажности по формулам:

$$W_{i{
m a6c}}=rac{m-m_1}{m_1-m_0}*100\%$$
 ; $W_{i{
m OTH}}=rac{m-m_1}{m-m_0}*100\%$;

Где і-номер пробы

т- масса навески с бюксом до сушки;

 m_0 - масса бюкса;

 m_1 -масса навески с бюксом после сушки.

Результаты определения содержания воды в карбамиде марки Б АО «ФосАгро – Череповец» приведены в таблице 1.

Таблица 1 Результаты определения содержания воды в карбамиде высушиванием в сушильном шкафу

№	Масса навес ки, (г)	Масса бюкса, m (г)	Масса навески с бюксом до сушки, m ₀ (г)	Масса навески с бюксом после сушки, I (г)	Содержание воды в карбамиде, Wi % масс	Температ ура сушки, ⁰ С
1	2	3	4	5	6	8
1	5,0	30,826	35,829	35,818	0,2200	65
2	5,0	29,331	34,331	34,323	0,2001	65
3	5,002	28,936	33,938	33,911	0,2413	65

Результаты определения содержания воды в карбамиде марки Б AO «Farg`onaazot» приведены в таблице 2.

Таблица 2 Результаты определения содержания воды в карбамиде высушиванием в сушильном шкафу

№	Масса навески, г	Масса бюкса, то	Масса навески с бюксом до сушки m	Масса навески с бюксом после сушки m1	Содержание воды в карбамиде, Wi	Время сушки tн
1	2	3	4	5	6	8
1	5,000	21,858	26,858	26,845	0.2603	1,2
2	4,997	21,955	26,952	26,940	0,2404	1,2
3	5,001	21,975	26,976	26,962	0,2201	1,2

Результаты определения содержания воды в карбамиде марки Б АО «ФосАгро – Череповец» приведены в таблице 1.

Полученные результаты определения содержания воды в карбамиде позволяют сделать вывод о том, что исследуемый материал соответствует норам ГОСТ.

Также была определена статическая прочность карбамида. Метод основан на определении предельной силы, необходимой для разрушения гранулы испытуемого материала между двумя параллельными плоскостями [5,6]

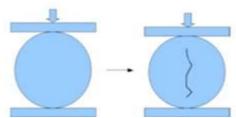


Рис. 1 Схема разрушения гранулы

Статическую прочность гранул (Р) в МПа вычисляли по формуле:

$$P = \frac{F}{S}$$

где F — сила, необходимая для разрушения одной гранулы, H; S — площадь сечения гранулы, MM;

Определение статической прочности карбамида марки «Ferganaazot» проводили в производственной лаборатории АО «Ferganaazot»

Таблица 3 Определение статической прочности карбамида марки Б «Ferganaazot»

Сумма сил для	Статическая	Статическая	Статическая
разрушения 20	прочность в	прочность в	прочность в
гранул	пересчете на 1	пересчете на 1	пересчете на 1
ΣР1-20, кгс	гранулу, (Х) Н	гранулу, (Х) кгс	гранулу, (Х) МПа
154,4	7,72	0,772	0,0772
151,4	7,57	0,757	0,0757

Статическую прочность гранул X, H (кгс), вычисляют по формуле

$$X = \frac{P_1 + P_2 + P_3 \dots + P_{20}}{20} (2,3)$$

 $X = \frac{P_1 + P_2 + P_3 \dots + P_{20}}{20}$ (2,3) Определение статической прочности карбамида марки Б проводили в лаборатории НИИ ТПУ.

Таблица 4 Определение статической прочности карбамида марки Б «ФосАгро – Череповец»

Размер гранул, мм	Нагрузка для	Нагрузка для
	разрушения 1 гранул т	разрушения 1 гранул в
	(Γ)	МПа
2,0	824	2,5717
3,2	1376	1,6775
2,3	796	1,8785
2,4	1396	3,0256
2,1	1524	4,3142
2,7	1320	2,2604
2,2	1428	3,6833
2,7	930	1,5926
2,8	1260	2,0063
2,2	1372	3,5388

$$X = \frac{\sum_{i=1}^{i=20} P_i}{20 \cdot S} = \frac{\sum_{i=1}^{i=20} P_i}{20 \cdot \frac{\pi d_{\text{cp}}^2}{4}} = 64 \cdot 10^{-5} \frac{\sum_{i=1}^{i=20} P_i}{d_{\text{cp}}^2}$$

Результаты определения содержания воды в карбамиде марки Б АО «ФосАгро – Череповец» и АО «Ferganaazot» представлены в таблицах 1

и 2. Влажности гранул карбамида марки «ФосАгро — Череповец» составила 22,05%, а марки «Ferganaazot» - 24,02%.

Полученные результаты определения содержания воды в карбамиде позволяют сделать вывод о том, что исследуемый материал соответствует нормам ГОСТ [2].

В результате испытаний было установлено, что статическая прочность гранул исследуемого карбамида «ФосАгро — Череповец» составляет 2.22 Мпа, а марки «Ferganaazot» -0,07645, что полностью отвечает требованиям ГОСТ [5].

СПИСОК ЛИТЕРАТУРЫ

- 1. ГОСТ 2081-2010 Карбамид. Технические условия М.: Изд-во Стандартинформ, 2010-20с.
- 2. ГОСТ 20851.4-75 Удобрения минеральные. Методы определения воды
- 3. ГОСТ 21560.0-82 Удобрения минеральные. Методы отбора и подготовки проб
- 4. ГОСТ 21560.1-82 Удобрения минеральные. Метод определения гранулометрического состава
- 5. ГОСТ 21560.2-82 Удобрения минеральные. Метод определения статической прочности гранул
- 6. ГОСТ 21560.5-82 Удобрения минеральные. Метод определения рассыпчатости

МИКРОПРОЦЕССОРНАЯ СИСТЕМА КОНТРОЛЯ ТОЛЩИНЫ СТЕНКИ ЛЕГКОСПЛАВНЫХ БУРИЛЬНЫХ ТРУБ

Таупык Н.Н.

Научный руководитель: Якимов Евгений Валерьевич, к.т.н., доцент ТПУ

Национальный исследовательский Томский политехнический университет

Данная работа посвящена разработке вихретокового измерителя толщины стенки легкосплавных бурильных труб. Большое внимание уделено выбору элементов схемы данного устройства и его обоснованию.

Основной задачей является нахождение наиболее рациональных решений, позволяющих повысить надежность прибора, уменьшить его