МОДЕЛИРОВАНИЕ СИСТЕМ ДОСМОТРОВОГО КОНТРОЛЯ БАГАЖА И РУЧНОЙ КЛАДИ С ФУНКЦИЕЙ РАСПОЗНАВАНИЯ МАТЕРИАЛОВ

Конюшков К. А., Осипов С. П.

Томский политехнический университет, г. Томск

Научный руководитель: Осипов С. П., к.т.н., в.н.с. российско-китайской научной лаборатории радиационного контроля и досмотра ТПУ

Качество распознавания материалов существенным образом зависит от параметров источника излучения, детектора, схемы контроля, ОК. Параметром распознавания в МДЭ [1] является эффективный атомный номер или функция от него. Осуществление упомянутого выбора параметров может быть осуществлено на основе имитационного моделирования анализируемых систем применительно к конкретной задаче проектирования в среде MathCAD.

Этапы алгоритма и программа имитации изображений параметра распознавания

- 1. Задание структуры ОК из конечного числа фрагментов, каждый из которых характеризуется массовой толщиной ρh и эффективным атомным номером Z.
- 2. Выбираются параметры системы: материалы и размеры детекторов; максимальные энергии излучения E_L , E_H .
 - 3. Строятся зависимости толщины ОК в д.с.п. Y_L , Y_H отрh и Z.
- 4. По распределениям ρh и Zпо объёму ОК формируются распределения толщин ОК y_L и y_H без шумов.
- 5. Рассчитываются распределения среднеквадратических отклонений σ_L и σ_H .
- 6. Моделируются шумы Φ_L и Φ_H , распределённые по Гауссу с параметрами $(0,\sigma_L)$ и $(0,\sigma_H)$.
 - 7. Формируются изображения с шумами $y_{Ln} = y_L + \Phi_L$ и $y_{Hn} = y_H + \Phi_H$.
- 8. Оцениваются массовые толщины и эффективные атомные номера ρh и Z.
- 9. Формируется полутоновое цветное изображение параметра распознавания.

Список использованных источников

1. Duvillier J. Inline multi-material identification via dual energy radiographic measurements/ J. Duvillier et al. // NDT & E International. – 2018. –Vol. 94.–P. 120–125.