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Abstract. The paper analyzes algorithms for selecting keypoints on the image for the 
subsequent automatic detection of people and obstacles. The algorithm is based on the 
histogram of oriented gradients and the support vector method. The combination of these 
methods allows successful selection of dynamic and static objects. The algorithm can be 
applied in various autonomous mobile robots. 

1. Introduction
Currently, robotic systems are rightly considered as the base for automation of industry, medicine, 
military industry, space exploration and other spheres of human activity. Their joint work allows 
achieving various goals and solving a wide range of technological problems.  

An autonomous mobile object is a kind of robotic system, which is based on an autonomous 
control system provided by optical sensors, computer algorithms and radar. An autonomous mobile 
object can be used to move passengers or cargo, to deliver materials, technological or other types of 
equipment, and to collect visual information when working with additional equipment. The main two 
tasks for any autonomous object are as follows. First, to be able to plan the path independently; 
second, to be able to move around the dynamic environment successfully, including the ability to 
move among other moving objects. Development of satellite navigation and electronic maps facilitated 
successful solution of the first task. The second task is much more difficult; many scientists around the 
world are trying to solve it using different methods and algorithms. The use of original path planning 
algorithms makes it easy to ensure the safety of movement in an area with dynamic obstacles. 

2. Distribution of keypoints on the image
Any image represents complex and difficult-to-extract structured information about the observed 
scene. Therefore, we need a method that will allow extracting information from the real-time video 
data stream, identifying and recognizing objects using this information.  

The main problem during the process of object recognition is to compare the image obtained from 
the camera with the etalon sample stored in the database. This problem can be solved using a number 
of tools allowing image recognition and matching them to databases. However, the main method is to 
establish a correspondence between the keypoints on the initial image and the etalon image.  

A keypoint is the simplest geometric element of the discrete representation of the mathematical 
function for describing the object recognition. To define these points, we introduce a concept of a 
neighborhood. That is, we consider a point pi to be a key (reference) point for some image; the 
neighborhood О(рi) of this point can be distinguished from the neighborhood О´(рi) of any other 
keypoint of the image pi. The process of detecting the given point is called detection, and the program 
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that carries out this process is called a detector. After this process, it is necessary to describe this 
particular point; and descriptors are responsible for this operation. A descriptor is a description of a 
keypoint that determines the characteristics of its neighborhood; it represents a numerical or binary 
vector of certain parameters [1]. 

There are many different methods for selecting keypoints and descriptors, but in this paper, we will 
use the histogram of oriented gradients (HOG). This choice is associated with a number of advantages 
of the HOG descriptor over others. First, HOG operates locally; it allows maintaining invariance in 
relation to geometric and photometric transformations of the object on small fragments of the image, 
but orientation of the object is an exception here. Second, a clear space partition, accurate calculation 
of directions, and strong local photometric normalization allow to not considering the movement of 
people if they are in vertical position. Therefore, this detector is a good tool for determining 
pedestrians on images. 

3. Histogram of oriented gradients
The histogram of oriented gradients (HOG) means descriptors of keypoints used in computer vision 
and image processing systems for object recognition. This descriptor is based on the method of 
counting the number of gradient directions in local areas of the image. 

The basis of this method is the assumption that an object description in the image can be achieved 
by specifying the distribution of intensity gradients or edge direction. The method is realized by 
partitioning the image into elementary regions (cells) and further calculating the histograms of the 
gradient directions or the edge directions for pixels for each region. The collection of histogram data 
for all cells is a descriptor [2]. 

Besides, the image is normalized in contrast; this is necessary in order to increase the accuracy. For 
this purpose, the intensity measure is determined for a large area of the image (block), the resulting 
value is used for normalization. This allows increasing the invariance of the descriptor in relation to 
illumination. 

The steps of the HOG algorithm realization include the following: calculating the gradient, forming 
cell histograms, forming descriptor blocks, normalizing blocks, and classifying descriptors [3, 4]. The 
last step is the most difficult because it is based on machine learning. To implement it, the support 
vector method can be used. This method allows a binary classification, that is, a division into two 
classes: 1) the object belongs to the required category or 2) does not belong.  

4. Supervised learning
The essence of the supervised learning is as follows. Let us suppose that we have a task to determine 
the membership of an object on the image. The decision-making process will be like a “black box” 
because we do not know how it works [5]. The task is to get a result or, in other words, to decide if an 
object belongs to a given group. 

Let us consider the given process by an example of image recognition when it is necessary to 
define whether the given object is a person or not. In this case, we ourselves form the so-called 
“learning set”, that is a set of examples and correct answers for them. We denote a set of examples as 
X, and a set of solutions as Y. Therefore, to solve our problem, it is necessary to introduce a function 
f(X), which will allow transforming the set X into the set Y (Figure 1). 

Figure 1. Function extraction f(X). 

These pairs of sets can be called as “stimulus-response” or precedent, and the aggregate of sets can 
be called as a training sample. The supervised learning is also often called as the learning by 
precedents [6]. 
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Thus, the use of the function found and the software allows solving an example task, which was not 
presented in the training sample.  

5. The support vector method
As we have already mentioned, the last step in the process of object detection on an image is the 
descriptor classification, which is implemented using the support vector method, which, in turn, is 
based on supervised learning.  

The support vector method (SVM) is a set of algorithms for solving classification problems based 
on supervised learning; this method belongs to a family of linear classifiers. Its main advantage is in 
constant decrease in the empirical classification error and increase in the gap, that is, a more confident 
work of a classifier. Therefore, the method is also called as maximum margin classifier [7–9].  
The main idea of the method is to interpret the initial vectors into a higher dimension space, and to 
allocate a hyperplane with the maximum gap in a given space.  

5.1 Description of the support vector method using the optimal separating hyperplane  
Let there be a linear separable sample, that is, a sample that can be divided into two classes (the case 
of binary classification). We divide this sample using a linear hyperplane; however, several planes 
may exist (Figure 2). In this case, each plane will divide the sample, but changes in the plane 
coefficients will be observed. Thus, here is a question. Which of these hyperplanes will be optimal?  

Figure 2. Construction of a separating hyperplane. 

The optimal separating hyperplane will be the one that allows fulfilling the following condition: the 
distance between two nearest points lying on the opposite sides of the hyperplane (that is, between 
points belonging to different classes) should be maximum. The corresponding classifier is called as the 
optimal separating classifier. 

To find the optimal hyperplane, we consider the formal construction, which is obtained as a result 
of the maximum shift of the separating hyperplane to to one or the other classes (Figure 3).  

Figure 3. Construction of a separating hyperplane. 

In this case, there is a question. What values will the scalar product of the weight vector w and x 
have taking into account the shear coefficient at the extreme points of each class. These extreme points 
belong to one or the other classes simultaneously, and the boundaries of the separating line pass 
through them.  
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where w0 is a shear coefficient (the probability distribution parameter, it allows establishing a 
relationship between the value of this parameter and the choice of the reference point of the scale 
measurement); sign is a function that allows determining the sign of a number or a mathematical / 
trigonometric function. 

If we multiply the vector w and the coefficient w0 by some arbitrary number, then the separating 
surface will not change at all. The sign of the expression will not change because the function will 
only be multiplied by some constant. In this case, we can require that the values of this function on the 
extreme objects modulo equal to unity  
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By requiring such normalization, it is possible to calculate the width of the separating strip. To do 
this, we take the direction that defines the normal to the separating surface, that is, the vector w, and 
consider the projection of the vector of extreme element difference of each class to this direction. In 
order to find this direction, it is necessary to take the scalar product of the «x+» and «x-» difference 
and the vector w normalized to its length. If we write this operation in details, we obtain the difference 
of scalar products of vectors:  
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At the same time, we should not forget that a certain relationship resulting from the normalization 
occurs to these extreme objects. If we use it, we get the following: 
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As a result, the width of the separating strip will be equal to 2 / w . Now we can put down a task 

that will describe the maximization of the width of the separating strip. To do this, we minimize the 
scalar product of two vectors w taking into account the fact that the vector w length is the root of this 
value. We also should take into account that the indention on this object must be greater or equal to 1.  
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5.2 Transition to linear inseparable sample  
Let us consider the case of a linear inseparable sample. In the previous case, we could require that the 
indention was greater or equal to 1, where 1 was a positive value, and the indention was positive when 
the classification was correct. Now, in the case of a linear inseparable sample, there will be objects 
that are incorrectly assigned to the class by this classifier. This means that it is necessary to allow this 
algorithm to be mistaken, that is to allow making indention, which will not be greater or equal to 1, but 
will be greater than or equal to 1 minus ξi, where ξi is the error on the ith object. In this case, it is 
necessary to add “fines” for these errors to the function being minimized because in case of their 
absence, it is possible to make a classifier with any arbitrary indention 
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Thus, it is possible to obtain an optimization problem for the support vector method. We need to 
introduce a link to a linear classifier. First, it is necessary to minimize the sum ξi, with ξi ≥ 0 and ξi ≥ 
1- Mi, where Mi is an indention. This means that the error ξi will be greater or equal to the maximum of 
the two values - 0 and 1 minus indention. On the other hand, because the sum ξi is minimized, then ξi 
is exactly equal to this value, that is, the maximum of 0 and 1 minus Mi  
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In this case, you can simply substitute these ξi for the optimization task, namely for the first 
expression; then we will get an unconditional optimization problem in SVM. That is, an optimization 
task without additional conditions.  
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Here, we can clearly see the loss function, which is piecewise linear, and the regularizer, which is a 
regular L2-regularizer. 

Thus, the support vector method is a linear classifier with a piecewise linear loss function (hinge 
loss) and an L2-regularizer. This method is necessary to maximize the gap between classes. In the case 
of a linear separable sample, this means simply maximizing the width of the separating strip. In the 
case of a linearly inseparable sample, the possibility of objects’ hitting into the strip and “fines” for 
this hitting is simply added. 

6. Conclusion
This algorithm, which includes a set of HOG descriptors and the support vector method, allows not 
only recognizing objects on a static image but also extracting them from the video data stream. The 
algorithm is optimal for recognizing people by means of an autonomous mobile object; it can also be 
used for recognizing other moving and static objects. 
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