
ЭНЕРГЕТИЧЕСКАЯ СТРУКТУРА ИАГ ЛЮМИНОФОРА

А.Т. ТУЛЕГЕНОВА

Томский политехнический университет, Томск, Россия E-mail: tulegenova.aida@gmail.com

Люминофоры на основе ИАГ являются многокомпонентными, сложные по составу: состоящиеся по крайней мере из трех элементов при стехиометрическом составе. Синтез порошков микрокристаллов проводятся при высоких температурах, выше 1500 С. Синтез при высоких температурах многомпонентных систем обычно приводит к нестехиометричности состава полученных кристаллов, и образованию различных видов дефектов решетки, в том числе антидефектов.

В настоящей работе приведена модель энергетической структуры ИАГ люминофора. Ширина запрещенной зоны ИАГ кристалла равна ~ 6,4 эВ [1]. Следовательно, в широком диапазоне от 4 до 6 эВ оптическое возбуждение приводит к созданию электронных возбуждений, которые передают одинаковым образом энергию центрам свечения. На рисунке 1 приведены спектры возбуждения и поглощения ИАГ люминофора. Показатель поглощения излучения люминофорами в области 4 - 6 эВ в хорошо люминесцирующих монокристаллах и керамике ИАГ:Се превышает 10² см -1. Столь высокие значения показателя поглощения в широкой области спектра свидетельствуют о существовании большого количества центров поглощения, то есть существовании дополнительной структурной фазы. Такой фазой, вероятно, является совокупность нанодефектов [2]. Тогда энергетическую структуру ИАГ:Се микрокристалла можно представить себе как встроенную энергетическую матричную зонную структуру, зонную структуру нанодефекта с центрами свечения в нем [3]. В широкой области спектра 4-6 эВ люминесценция возбуждается без создания собственных электронных возбуждении. Предполагается, что поглощение и возбуждение люминесценции в области от 4-6 эВ обусловлено инициированием межзонных переходов в нанодефекте.

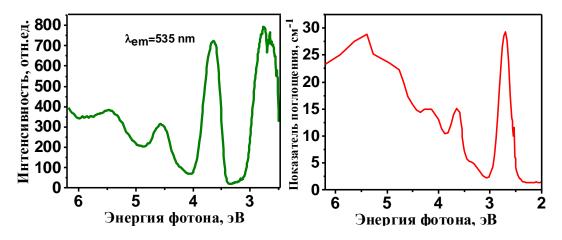


Рисунок 1 – Спектры возбуждения и поглощения ИАГ люминофора

Энергетическая структура кристалла ИАГ с нанодефектами может быть представлена как вложенную в матричную структуру фазу нанодефектов (рисунк 2). Нанодефекты представляет как совокупность, набор всех видов дефекта, то есть в своем составе имеют все химические элементы: Y, Al, O, активатор — Се, другие примеси, а также собственные дефекты: антидефекты, вакансии и междоузлия для компенсации зарядовых и размерных различий. К вводимым собственным дефектам нужно отнести не только вакансии и ионы в междоузлиях, но и все варианты антидефектов. Совокупность нанодефектов представляет собою отдельную новую фазу, которая имеет свою энергетическую и пространственную структуру. Очевидно, что состав нанодефектов в сильной степени зависит от

технологических режимов при синтезе люминофора. Поэтому и энергетическая структура зон нанодефектной фазы может отличаться от люминофора к люминофору.

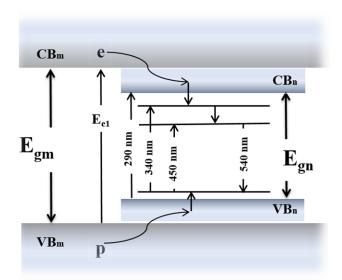


Рисунок 2 – Спектры возбуждения и поглощения ИАГ люминофора

На рисунке $2 E_{gm}$ и E_{gn} зона запрещенных переходов в матрице и нанодефекте. $E_{e1,2..n}$ $E_{11,2..n}$ -возможные поглощательные и излучательные электронные переходы. Центр свечения является элементом нанодефекта, поэтому энергетические уровни центра свечения расположены в нанодефекте. Нанодефект является эффективной ловушкой для электрона и дырки. Оптическое возбуждение люминофоров в области полос на 340 и 460 нм (E_{e3} , E_{e4}) приводит к прямому возбуждению центров свечения, которое завершается излучением E_{l1} в области 540 нм.

Список литературы

- 1. Tomiki T., Akamine H., Gushiken M., Kinjon Y., Miyazato M. [et al.]. Ce^{3+} Centres in $Y_3Al_5O_{12}$ (YAG) Single Crystals // Journal of the Physical Society of Japan. -1991.-V. 60.-P.2437-2445
- 2. Lisitsyna L.A., Lisitsyn V.M. Composition Nanodefects in Doped Lithium Fluoride Crystals // Physics of the Solid State. 2013.-V.55. № 11.-P. 2297–2303
- 3. Тулегенова А.Т., Лисицын В.М., Абдуллин Х.А., Степанов С.А., Гусейнов Н.Р. Нанодефекты в микрокристаллах люминофоров на основе ИАГ: XVI международная молодежная конференция по люминесценции и лазерной физике. -Село Аршан, Республика Бурятия, Россия, 2–7 июля, 2018 г.