terialy soveshchaniya [Geodynamic evolution of the lithosphere of the Central-Asian mobile belt (from ocean to continent). Proc. of the scientific meeting. Irkutsk, 20–23 Oct. 2003. pp. 127–130.

- Elkin E.A. Skhema stratigrafii kembriyskikh otlozheny prieniseyskoy chaste Zapadnoy Sibiri [Stratigraphy scheme of Cambrian deposits in Yenisei part of Western Siberia]. *Geologiya i geofizika*, 2001, vol. 42, no. 7, pp. 1015–1027.
- 18. Simonov V.A., Stupakov S.I. Koveshnikov A.E. osobennosti formirovaniya paleozoyskikh bazaltovykh kompleksov fundamenta Zapadno-Sibirskogo neftegazonosnogo osadochnogo basseyna [Features of formation of the Paleozoic basalt complexes of the basement of the West Siberian oil and gas bearing sedimentary basin]. Korrelyatsiya altaid i uralid: magmatizm, metamorfizm, stratigrafiya, geokhronologiya, geodinamika i metalogenicheskoe prognozirovanie. Materialy II Rossiysko-Kazakhstanskogo mezhdunarodnogo nauchnogo soveshchaniya [Correlation of Altaic and Uralic: magmatism, metamorphism, stratigraphy, geochronology, geodynamics and metallogenic forecasting. Proc. of II Russian-Ka-

zakhstan international scientific meetings]. Novosibirsk, 1–4 April, 2014. Novosibirsk, SB RAS Publ. house, 2014. pp. 149–151.

- 19. Kovesnikov A.E. Vliyanie gertsinskogo skladkoobrazovaniya na sokhrannost paleozoyskikh obrazovany Zapadn-Sibirskoy geosineklizy [Impact of Hercynian folding on safety of Paleozoic formations of the West-Siberian geosyneclise]. Bulletin of the Tomsk Polytechnic University, 2013, vol. 323, no. 1, pp. 148–151.
- 20. Isaev G.D., Makarenko S.N., Raaben M.E., Bizhakov V.I., Koptev I.I. Geologicheskoe stroenie doyurskogo osnovaniya Zapadno-Sibirskoy plity v predelakh Ket-Tymskogo mezhdurechya [Geological structure of pre-Cambrian founding of the West-Siberian plate within Ket-Tym interfluves]. Novosibirsk, Novosibirsk State University Press, 2003. 34 p.
- Koveshnikov A.E. Lovushki nefti i gaza v doyurskikh otlozheniyakh Zapadno-Sibirskoy geosineklizy (Tomskaya oblast) [Oil and gas traps in pre-Jurassic deposits of the West-Siberian geosyneclise (Tomsk region)]. Bulletin of the Tomsk Polytechnic University, 2011, vol. 319, no. 1, pp. 152–155.

УДК 553.3/.4.078:553.2:551.73

ПЕТРО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ И РУДОНОСНОСТЬ ДВУХ ПОДТИПОВ АНОРОГЕННЫХ ГРАНИТОИДОВ ГОРНОГО АЛТАЯ

Гусев Анатолий Иванович,

д-р геол.-минерал. наук, профессор каф. географии и экологии естественно-географического факультета Алтайской государственной академии образования им. В.М. Шукшина, Россия, 659300, г. Бийск, ул. Советская, д. 11. E-mail: anzerg@mail.ru

Коробейников Александр Феопенович,

д-р геол.-минерал. наук, профессор каф. геологии и разведки полезных ископаемых Института природных ресурсов Томского политехнического университета, Россия, 634050, г. Томск, пр. Ленина, д. 30. E-mail: lev@tpu.ru

Актуальность работы определяется необходимостью изучения петро-геохимических особенностей анорогенных гранитоидов и их рудоносности.

Цель работы: обоснование различной рудоносности двух подтипов анорогенных гранитоидов Горного Алтая по их петро-геохимическим особенностям.

Методы исследования: Химический состав на главные петрогенные элементы определён силикатным анализом. Определения редких элементов выполнены эмиссионной спектрометрией с индуктивно-связанной плазмой на спектрометре «OPTIMA-4300», для Cu, Zn, Pb, Li – методом ISP-AES, остальные элементы, в том числе РЗЭ, – методом ISP-MS в лаборатории ВСЕГЕИ (г. Санкт-Петербург). Расчёт тетрадного эффекта фракционирования РЗЭ выполнен по методу В. Ирбер.

Результаты: выявлены два подтипа анорогенных гранитоидов Солонешенского рудного района, генерация которых проходила в сложных условиях мантийно-корового взаимодействия. Установлены различные источники плавления мантийного и корового субстратов для гиперсольвусных и транссольвусных гранитов. Гиперсольвусные рибекитовые лейкограниты Елиновского массива формировались с участием тетрадного эффекта фракционирования РЗЭ М-типа и генерировали альбититовое и скарновое уран-редкометалльно-редкоземельное оруденение, а транссольвусные рибекитовые лейкограниты Казандинского массива сопровождались тетрадным эффектом фракционирования РЗЭ W-типа и генерировали жильное и грейзеновое вольфрам-молибденовое и бериллиевое оруденение.

Ключевые слова:

Анорогенные гранитоиды, гиперсольвусные, транссольвусные, мантийно-коровое взаимодействие, тетрадный эффект фракционирования РЗЭ, W, Mo, Be, U, Zr, TR.

Введение

Анорогенные гранитоиды в Горном Алтае представлены гиперсольвусными моношпатовыми и субсольвусными двуполевошпатовыми типами [1]. Моношпатовые рибекитовые граниты и лейкограниты распространены в регионе широко, и с ними в пространственной и парагенетической связи обнаруживаются различные типы жильного, скарнового, альбититового и грейзенового оруденения Та, Nb, U, W, Be, Sc, Zr, редких земель. В Солонешенском рудном районе и в пограничной части с Талицко-Бащелакским локализованы несколько анорогенных интрузивов, два из которых являются рудоносными. Формирование рибекитовых гранитоидов этих массивов по данным абсолютного датирования происходило в узком временном интервале 267-272 млн лет. Установлено, что с разными массивами связаны месторождения и проявления со своим набором металлов. По петрографическим и петрохимическим данным резких отличий в составе таких гранитоидов не обнаруживается. Использование высокочувствительных методов лабораторных анализов позволяет в составе рибекитовых гранитоидов анорогенного типа Горного Алтая выделить два подтипа: гиперсольвусные и транссольвусные, различающиеся геохимическими параметрами, петрологическими особенностями генерации и металлогенией [2-4].

Геологическое положение массивов

Изученные массивы представлены: 1 – Елиновским, расположенным в левом борту реки Щебеты и являющимся сателлитом крупного Бутачихинского, и 2 – Казандинским, расположенным южнее и приуроченным к зоне влияния Бащелакского разлома.

Елиновский массив представляет собой трещинное удлинённое тело северо-восточного простирания протяжённостью более 2 км и шириной от 0,5 до 1 км. На северо-восточном продолжении массива наблюдается несколько даек лейкократовых рибекитовых гранит-порфиров протяжённостью от 0,5 до 1 км и мощностью от 0,3 до 50 м. Массив прорывает и ороговиковывает терригеннокарбонатные силурийско-девонские породы. Контакты массива извилистые, рвущие; характерны узкие апофизы с ксенолитами ранних фаз. Контактовые изменения выражаются в ороговиковании и скарнировании карбонатно-терригенных отложений. Ширина контактовых ореолов достигает 1 км.

Казандинский массив, в отличие от Елиновского, имеет извилистые очертания и близок к изометричной форме площадью около 2 км². Он прорывает ордовикские и силурийские терригенно-карбонатные породы и терригенные кембро-ордовикские отложения. Ороговикование проявлено на расстоянии от 0,5 до 0,8 км от контакта. Северовосточная часть массива срезается Бащелакским разломом.

Петро-геохимические особенности массивов

Оба массива слагают сходные породные типы: граниты, лейкограниты, умеренно-щелочные лейкограниты, лейкогранит-порфиры. В обоих массивах присутствуют рибекитовые разности пород. Химические составы пород массивов сведены в табл. 1.

На диаграмме A/NK-A/CNK по [7] породы обоих массивов попадают в поле сильно пералюминиевого типа (рис. 1).

Рис. 1. Диаграмма A/NK−A/CNK по Маньяру и Пикколи [7] для пород Казандинского и Елиновского массивов A=Al₂O₃, N=Na₂O, K=K₂O, C=CaO (в молекулярных количествах). Породы массивов: 1 – Казандинского, 2 – Елиновского

Анализ табл. 1 показывает, что отношения многих элементов в породах сравниваемых массивов действительно обнаруживают не заряд-радиусконтролируемое («non-CHARAC» в англоязычной литературе) поведение химических элементов. Вероятно, различные типы тетрадного эффекта фракционирования редкоземельных элементов (М-тип для Елиновских гранитоидов и W-тип для Казандинских) обязаны различными активностями, насыщенностями и обогащенностями летучими компонентами, такими как H₂O, CO₂, и такими элементами, как Li, B, F и/или Cl.

Так, отношения K/Rb в породах обоих массивов весьма высокие (от 144,1 до 395,8) и намного превышают среднее значение для хондрита (63,8). Отношения K/Ba в гранитоидах Казандинского массива (42,6...53,7) намного меньше, чем в хондритах (236,1). Исключение составляет лейкогранит умеренно-щелочной, в котором это отношение немного превышает хондритовое значение. В Елиновском массиве, наоборот, почти все отношения K/Ba весьма высокие (534...2072) и намного превышают хондритовое значение (236,1) и лишь у одного рибекитового лейкогранита (206,6) это отношение чуть ниже хондритового. В целом же граниты Елиновского массива отличаются по отношению K/Ba от граниоидов Казандинского массива.

Zr и Hf имеют близкое геохимическое поведение и их отношение (Zr/Hf) в большинстве земных и внеземных пород являются почти постоянными, составляя около 38 ± 2 ; в хондритах оно составляет 36,0. Однако Zr/Hf отношения редуцированы для гранитоидов Казандинского массива, варьируя от 7,9 до 10,9, и близки к хондритовому значению в Елиновских гранитоидах (24,5...39,3). На диаграмме соотношений Zr/Hf–TE₁ отчётливо видно, что с увеличение тетрадного эффекта М-типа и уменьшением W-типа происходит уменьшение отношений Zr/Hf в разные стороны от хондритовых значений (рис. 2).

Литология	A
-----------	---

-	, .					,											-		/ .
Оксиды, хи- мические элементы и отношения	1	2	3	4	5	6	7	8	9	Оксиды, хи- мические элементы и отношения	1	2	3	4	5	6	7	8	9
SiO ₂	71, 25	75,4	76,1	76,0	77,5	72,29	74,71	75,17	74,02	Но	3,21	0,63	3,08	2,14	2,22	0,5	0,7	0,9	0,6
TiO ₂	0,22	0,08	0,08	0,08	0,08	0,27	0,18	0,08	0,08	Er	10,2	2,15	9,03	6,25	6,41	1,4	1,6	2,7	1,9
Al ₂ O ₃	14,50	12,4	12,3	12,9	11,5	13,99	13,01	12,57	12,67	Tm	1,78	0,55	1,41	1,03	0,96	0,3	0,29	0,21	0,52
Fe ₂ O ₃	2,35	1,49	1,15	0,91	1,59	0,94	0,66	0,64	0,58	Yb	10,2	3,89	9,4	6,39	7,01	8,2	8,1	8,0	7,5
FeO	1,25	0,94	0,79	0,63	<0,2	2,08	1,87	1,78	1,36	Lu	1,41	0,63	1,34	0,98	1,25	0,22	0,23	0,21	0,42
MnO	0,10	0,05	0,03	0,02	0,062	0,06	0,06	0,06	0,06	Y	90,5	12,2	83,2	62,0	53,6	46,7	45,2	58,0	65,6
MgO	0,23	0,18	0,07	0,05	<0,1	0,40	0,29	0,15	0,13	ΣP3Э	350,32	166,36	335,Z	268,9	191,1	215,2	189,1	1/5,1	205,3
CaO	0,15	0,43	0,47	0,43	0,28	1,49	1,27	0,73	0,76	Gd 7r	51,5 554	22,0	21,0 161	20,1	20,3	17,4	18,5	20,7	19,0
Na ₂ O	5,45	4,34	4,36	4,26	3,9	3,67	3,67	3,72	3,9	SC	25	<01	<01	<01	202	×0,4 & 1	43,5	36	5 2
K ₂ O	4,12	4,27	4,28	4,63	4,2	3,49	3,46	4,6	4,6	Hf	16.7	8.0	15.3	9.13	10.7	61	45	4.4	43
P ₂ O ₅	0,15	<0,05	<0,05	<0,05	<0,05	0,08	0,07	0,05	<0,05	Та	12.9	1.36	2.41	1.52	1.48	3.5	3.8	2.2	2.3
Сумма	99,99	100	100	100	99,7	99,87	99,9	99,92	99,93	Mo	1,1	0,75	0,86	1,66	2,75	2,2	1,8	1,1	0,9
V	12,1	10,7	10,9	10,9	<2,5	12,2	11,6	1,9	8,5	Sb	0,3	0,25	0,2	0,32	0,93	0,1	0,2	0,2	0,1
Cr	35,5	20,3	21,5	34,6	26,8	21,4	19,0	8,8	11,4	Sn	5,9	3,34	4,06	2,63	9,21	5,6	5,45	4,7	4,5
Со	2,1	1,04	1,39	1,43	<0,5	3,3	2,9	1,9	1,9	Be	4,5	3,67	4,73	3,79	4,45	2,1	1,95	0,7	1,74
Ni	2,2	2,05	2,99	1,83	<0,1	19,7	17,1	18,0	11,6	W	1,3	0,73	0,89	0,6	0,61	1,5	1,9	2,1	2,5
Cu	4,5	1,95	2,25	3,27	11,8	13,9	13,2	12,6	14,8	U	6,3	4,54	6,27	3,83	6,5	2,1	1,9	2,0	2,1
Zn	145	163	149	112	109	46,8	38,1	35,6	34,5	Li	171,0	114,0	169,0	10,9	13,7	55,3	37,6	8,7	21,7
Rb	250	246	226	141	183	111,8	110,5	123,7	98,7	Ag	0,05	0,018	0,045	0,025	0,039	0,1	0,07	0,09	0,1
Sr	275	1,85	1,95	5,11	16,9	203,4	191,6	55,2	126,8	(La/Yb) _N	2,7	4,97	2,84	4,1	1,89	4,17	3,73	2,8	3,65
Nb	35,1	23,8	25,9	17,7	22,8	12,9	10,0	7,0	8,3	Nb/Ta	2,7	17,5	10,7	11,64	15,4	3,68	3,03	3,18	3,61
Cs	7,7	2,89	4,66	1,35	2,24	4,7	4,4	3,2	4,3	Eu/Eu*	0,07	0,03	0,036	0,076	0,010	0,/1	0,76	0,82	0,79
Ва	204	17,1	24,9	186	43	734	721,7	141,2	725,4		2,4	3,08	4,38	4,07	2,69	5,8	4,6	5,6	5,3
Pb	19,5	5,8	16,5	6,83	18,1	21,3	20,5	22,8	20,7		1,08	1,21	1,08	0,99	1,1Z	0,73	0,78	0,84	0,89
Th	15,1	14,0	27,5	15,6	17,5	12,2	8,7	11,3	11,2	IE _{1,3}	1,01	1,02	1,04	0,97	1,11	0,/1	0,65	0,6/	0,//
La	41,5	29,3	40,5	39,7	20,1	51,8	45,7	34,0	41,4	(La/Sm) _N	2,05	3,9	2,06	2,9	2,19	5,89	5,84	7,44	5,76
Ce	90,2	72,3	88,9	71,3	50,4	56,8	51,3	41,1	55,3	(Gd/Yb) _N	1,1	0,57	1,03	1,14	0,66	0,39	0,34	0,22	0,30
Pr	12,1	7,83	11,9	10,5	4,99	7,3	5,3	5,1	5,5	K/Rb	198,6	144,1	157,1	395,8	176,6	282,1	240,3	281,8	386,8
Nd	46,8	26,6	45,1	38,4	20,5	29,6	19,6	17,3	16,7	K/Ba	534	2072	1426	207	810	42,9	42,6	252	53,/
Sm	12,4	4,48	12,1	9,25	5,62	5,4	4,8	2,8	4,4	Zr/Hr	33,Z	31,0	30,3	39,3	24,5	7,9	10,1	9,7 1 OE	10,9
Eu	0,87	0,11	0,44	0,7	0,27	1,12	1,05	0,69	0,97		3.2	21.5	1,50	2,24	13.6	4,01	4,57	4,00	4,30
Gd	11,9	2,77	. 12,1	9,1	5,81	4,0	3,4	2,2	2,8		78.1	19.4	27 0	20,1 78 Q	74.1	93.4	64 5	64.4	10,0
Tb	2,15	0,38	2,12	1,49	1,23	0,66	0,41	0,27	0,43	Sr/Fu	31.6	16.8	4 43	73	62.6	181.6	182 5	80.0	130 7
Dy	15,1	2,54	14,6	9,72	10,8	1,22	1,38	1,58	1,27	La/Lu	67.5	46.6	30.2	40.5	16.1	235.4	198.7	161.9	98.5

Таблина 1	Представительные анализы породных типов Елиновского и Казанлинского массиво	в (оксилы в мас %	балементы в г.	/τ)
таолица і.	ו וויסט או איז	э (ОКСИДЫ Б Мас. 70	, <i>э</i> лсійспі <i>Б</i> і /	1/

Примечание: Силикатный анализ выполнен в лаборатории ВСЕГЕИ. Определения редких элементов выполнены эмиссионной спектрометрией с индуктивно-связанной плазмой на спектрометре «OPTIMA-4300», для Cu, Zn, Pb, Li – методом ISP-AES (аналитик Э.Г. Червякова), остальные элементы, в том числе РЗЭ, – методом ISP-MS в той же лаборатории (аналитики В.А. Шишлов, В.Л. Кудряшов). ΣРЗЭ – сумма редкоземельных элементов. Значения РЗЭ нормированы по хондриту по E. Anders, N. Greevesse (1989) [5]. Eu*=(Sm_N+Gd_N)/2. TE₁ – тетрадный эффект фракционирования РЗЭ первой тетрады по Irber [6]; TE₁₃ – тетрадный эффект фракционирования РЗЭ, как среднее между первой и третьей тетрадами. Породы Елиновского массива: 1 – гранит-порфир умеренно-щелочной, 2–4 – лейкограниты рибекитовые умеренно-щелочные, 5 – лейкогранит-порфир умеренно-щелочной, 9 – лейкогранит рибекитовые.

На диаграмме Y/Ho–TE₁ фигуративные точки составов пород занимают различные позиции относительно друг друга, а также составов хондритов и области варьирования составов магматических пород (рис. 3).

Если составы пород Елиновского массива близки к области варьирования составов магматических пород, то для пород Казандинского массива наблюдается сильное изменение соотношений редких земель первой триады РЗЭ, а также Y и Ho.

На диаграмме Eu/Eu*-TE₁ соотношения отношений европия и тетрадного эффекта фракционирования первой тетрады также дают различные тренды для сравниваемых массивов (рис. 4). На диаграмме чётко видно, что увеличение значения тетрадного эффекта М-типа первой тетрады в Елиновском массиве коррелируется с уменьшением величины Eu/Eu*. Обратная картина наблюдается для пород Казандинского массива. В нём уменьшение величины тетрадного эффекта W-типа сопровождается слабым ростом значений Eu/Eu*. Европиевая негативная аномалия (с \geq 95 % Eu дплетированием на рис. 4) для Елиновского массива не может быть объяснена традиционной сепарацией полевых шпатов в расплаве, хотя известна констатация позитивной аномалии Eu в коэффициенте распределения модели РЗЭ в расплавах. Установлено в последнее время, что причина проявления тетра

дного эффекта фракционирования РЗЭ в высоко эволюционированных гранитоидных магмах вызвана взаимодействием магма-флюид, которое создаёт не только деплетирование Еи в породах, но и также вызывает необычную негативную аномалию во всех конституционных минералах, включая и калиевый полевой шпат [8]. Сравнение величин отношений Еи/Еи* для обоих массивов показывает, что чем выше указанное отношение, тем выше кислотность среды, согласно рядам кислотности-щёлочности А.А. Маракушева [9] для ряда элементов Sm, Gd, Eu в водно-сероводородных растворах при стандартных условиях. Следовательно, при становлении Казандинского массива и формировании грейзенового оруденения W и Ве кислотность среды была выше, чем при формировании Елиновского массива с более щелочной средой. С последним связаны альбититы с оруденением U, Zr, Nb, Ta, TR.

Рис. 2. Диаграмма Zr/Hf[−]TE₁ для гранитоидов Елиновского и Казандинского массивов TE₁ по [6]. Серая область отвечает только отношениям элементов (Zr и Hf), но не TE₁. Хондритовые значения приняты по [5]. Гранитоиды массивов: 1 – Казандинского, 2 – Елиновского

Рис. 3. Диаграмма Y/Ho-TE₁ для пород Казандинского и Елиновского массивов TE₁ по [6]. Хондритовые значения приняты по [5]. Гранитоиды массивов: 1 – Елиновского, 2 – Казандинского

Рис. 4. Диаграмма Eu/Eu*-TE₁ для пород Казандинского и Елиновского массивов. Условные обозначения те же, что на рис. 3

Сравнительные данные по комплексу признаков анализируемых массивов сведены в табл. 2.

Таблица 2. Сопоставление гранитоидов Елиновского и Казандинского массивов по данным [2, 3, 10]

		Kanayana				
параметры	ЕЛИНОВСКИЙ МАССИВ	казандинский массив				
Кварц	33	30				
Микроклин-пертит	52	38				
Альбит	1	28				
Рибекит	6	2,7				
Эгирин	1	0,9				
Магнетит	0,3	1,2				
Гематит	0,2	1,0				
Циркон	1,2	0,8				
Флюорит	0,4	-				
Монацит	0,5	0,2				
	A ₂ ,	A ₂ ,				
Тип гранитов	Пералюминиевый,	Пералюминиевый,				
	гиперсольвусный	транссольвусный				
Сумма РЗЭ, г/т	166-269	175-215				
Тип тетрадного эффекта фракцио- нирования РЗЭ	М-тип	W-тип				
Возраст (млн лет)	369-372±5-7	367±4				
⁸⁷ Sr/ ⁸⁶ Sr	0,70513-0,7042	0,7076				
ε(Nd) _t	+3,	+0,7				
€(Sr) _t	+30,2	+35,5				
Возраст протолита	900	1100				
Рудная минерализация	Ta, Nb, Zr, U, TR	Be, W, Mo				

Примечание: Минералы в объёмных процентах.

Анализ табл. 2 показывает, что анорогенные гранитоиды Елиновского массива относятся к гиперсольвусному подтипу и характеризуются преобладанием в своём составе микроклин-пертита, несколько более поздним возрастом и ювенильным (мантийным) соотношением изотопов стронция. В них проявлен М-тип тетрадного эффекта распределения РЗЭ. Анорогенные гранитоиды Казандинского массива относятся к промежуточному подтипу между субсольвусными и гиперсольвусными гранитами – транссольвусному. Это несколько более ранние граниты с более древним протолитом и соотношением изотопов стронция, указывающим на контаминацию корового материала. В минеральном составе этих гранитов меньшие количества рибекита и значительные содержания альбита. В гранитоидах Казандинского массива проявлен W-тип тетрадного эффекта фракционирования РЗЭ, предполагающего участие высоководных контаминированных коровых источников с высокими содержаниями фтора, бора, фосфора и других летучих компонентов.

Рудная минерализация

В Щебетинском рудном узле наибольший интерес представляют Токаревское и Казандинское рудные поля с двумя разведанными молибденвольфрамовыми и одним бериллиевым месторождениями. Оруденение локализуется, как в эндо-, так и в экзоконтактовых зонах гранитных массивов. В Казандинском рудном поле наиболее крупными являются Казандинские вольфрамовое и бериллиевое месторождения.

Казандинское бериллиевое месторождение разведывалось в 1951-1960 гг. на глубину до 300 м. Оруденение размещается в кварцевых жилах, образующих полосу шириной более 500 м. Жилы (65 шт.), вошедшие в подсчет запасов, имеют мощность до 1,2 м (средняя - 0,39 м) и общую протяженность 8115 м. Их простирание 250-300°, падение южное под углом 65-85°. Главным рудным минералом является берилл, представленный как мелкими, так и крупными кристаллами (10×2 см) и гнездами; в подчиненных количествах отмечаются пирит, молибденит, висмутин, вольфрамит, а из нерудных - турмалин, морион, дымчатый кварц. Среднее содержание ВеО в жилах составляет 0,194 %. Отмечаются повышенные содержания (%): Мо – до 0,3; Pb – до 0,1; Cu, Bi – до 0,05, а так же золота – до 0,2 г/т и серебра – до 9 г/т. В кварце, обогащенном пиритом, установлено 134 г/т серебра, 0,5 г/т золота. Запасы ВеО категории В+С1+С2 для Казандинского бериллиевого месторождения составляют 1218,8 т.

В контакте с Елиновским массивом сформировались скарновое флюорит-редкоземельное и альбититовое тантал-ниобиевое с цирконием проявления.

Елиновское скарновое флюорит-редкоземельное проявление находится в северо-западной части Елиновского массива и на его продолжении. Здесь на выклинке массива наблюдается несколько кулисообразных даек рибекитовых лейкогранитпорфиров, в контактах которых локализуется скарновая залежь, сложенная пироксен-гранатовыми скарнами с редкими выделениями волластонита. Контакт среднезернистых роговообманковых лейкогранит-порфиров с известняками куимовской свиты верхнего силура интрузивный. Граниты вблизи контакта каолинизированы, окварцованы и обохрены по трещинам. Известняки скарнированы и мраморизованы. В скарнированных известняках наблюдается серия кварцевых, кварц-карбонатных и кварц-флюоритовых жил. Простирание жил северо-западное (285–300°), падение северо-восточное под углом 45-90°. Мощность жил до 0,8 м. Прослеживаются они по простиранию на первые десятки метров. В отдельных жилах флюорит составляет до 50 % объема породы. Иногда в кварце наблюдается мелкая, довольно редкая вкрапленность пирита, галенита и сфалерита. Рентгено-спектральный анализ каолинизированного гранита дал следующие результаты: Y - 0,01...0,03 %, Yb - 0,01...0,03 %. Спектральный анализ бороздовых проб по кварцу с сульфидами показал наличие Pb до 0,3...1 %, Zn до 1 %. Нами в скарнированных известняках определены содержания (%): La – 0,1...0,3, Ce – 0,2...0,3, Y – 0,01...0,03. Основная масса редких земель связана с Се - кальцитом, в котором содержания редких земель составляют (г/т): La – 1450, Ce – 870, Y – 270. Опробованию были подвергнуты скарнированные известняки, кварц-флюоритовые и кварцкарбонатные породы. Повышенное содержание элементов встречено лишь в измененных гранитах (%): Zr – 0,1, Nb – 0,005, Ga – 0,001, Y – 0,01, Yb – 0,002. Радиоактивностью 65 мкр/час на фоне 25 мкр/час обладают дайки рибекитовых лейкогранитов мощностью до 0, 3 м и измененные граниты по зонам дробления. В первом случае в дайках повышенная радиоактивность, связанная с малаконом (малакон - дипирамидальная разновидность циркона с повышенными содержаниями U, TR, Th; содержание U – 0,8…1 %, Th – 0,3 % по рентгеноспектральному анализу), а во втором случае природа радиоактивности не выяснена. Местами в дайках наблюдается малакон в виде густой вкрапленности. Размер зерен до 0,5 см. Химическим анализом в гранитах установлен диоксид циркония в количествах от 0,1 до 0, 76 %.

Альбититовое тантал-ниобий-циркониевое *проявление Вершинное* расположено в северной части Елиновского массива. Здесь альбитизированные и окварцованные рибекитовые лейкограниты превращены местами в крупнозернистые альбититы с вкрапленностью танталита, колумбита, пирохлора и циркона размерами от 0,1 до 1 мм. Содержания тантала варьируют (%) от 0,01 до 0,12, ниобия – от 0,005 до 0,1, циркония от 0, 1 до 0,5, урана от 0,005 до 0,1.

Обсуждение результатов и выводы

Два подтипа анорогенных гранитоидов, выделенных в Солонешенском районе, характеризуется разной степенью мантийно-корового взаимодействия и различными источниками плавления корового субстрата. Сопоставление данных по анализируемым массивам с экспериментальными данными по моделированию источников плавления показали, что граниты Казандинского массива тяготеют к расплавам, образовавшимся за счёт плавления амфиболитов, а все остальные породы – за счёт плавления метаграувак [11]. Аналогичные сопоставления с экспериментальными моделями плавления коровых источников для Елиновского массива дали однозначные показатели плавления за счёт граувакк [11].

Ультракислые породы Казандинского и Елиновского массивов располагаются на максимуме степени изестково-щелочного фракционирования ортоклаза и альбита. Экспериментально установлено, что этой ситуации могут отвечать: уменьшение щёлочности в процессе взаимодействия вода-породы или небольшая степень ассимиляции пелитов, которые и будут легко увеличивать показатели фракционирования ортоклаза и альбита, что и имеет место для конечных дифференциатов и Казандинского, и Елиновского массивов.

Принципиальные отличия сравниваемых массивов по проявлению тетрадного эффекта фракционирования РЗЭ в породах, вероятно, обусловлены различными сценариями формирования как по геологическим условиям, так и по характеру флюидного режима [12]. Характер зональности у сравниваемых массивов различен, что связано с особенностями генерации и становления интрузивных тел. На большом фактическом материале по изучения сложных габбро-гранитоидных серий выявлены 2 крайних типа зонаальности: 1 – нормальная зональность, в которой более эволюционированные фазы (граниты, лейкограниты) локализуются в центре массивов, а по периферии – менее эволюционированные – породы первых фаз внедрения (габброиды, диориты); контакты между фазами постепенные с конкордантными или слабо конкордантными текстурами и переходами; 2 – обратная зональность массивов проявляется тогда, когда более эволюционированные порции магмы локализуются на периферии; контакты между фазами и фациями контрастные с дискордантными текстурами [13, 14]. Такой различный характер зональности плутонов интерпретируется как результат химической дифференциации и скорости поступления последовательных фаз. В случае быстрого поступления фаз и отдельных пульсаций предыдущие поступления не успевают закристаллизоваться и более поздние фазы их легко прорывают и располагаются в центре плутонов с формированием нормальной зональности. Наоборот, когда скорость становления массивов малая, предыдущие фазы внедрения успевают закристаллизоваться и тогда более поздние фазы внедряются на периферию плутонов с образованием обратной зональности. Становление и характер зональности Елиновско-Бутачихинского плутона отвечает обратной зональности – Елиновский массив, сложенный наиболее эволюционированными рибекитовыми гранитами и лейкогранитами, располагается на периферии сложного плутона. Зональность Казандинского массива отвечает нормальному типу, когда наиболее эволюционированные лейкограниты локализуются в центре плутона [15].

В породах Казандинского массива проявлен W-тип тетрадного эффекта фракционирования. Известно, что W-тип тетрадного эффекта более свойственен морской воде, грунтовым водам, известнякам, другим осадочным породам [16, 17]. В последнее время установлено, что W-тип тетрадного эффекта может проявляться и в гранитоидах, флюиды которых обогащены вадозной водой [18, 19]. Ранее нами показано, что такое обогащение вадозной водой в процессе контаминации корового материала происходило и для гранитоидов Казандаинского массива [11]. Становление Казандинского массива происходило в лежачем боку регионального глубинного Бащелакского разлома, оперяющего Чарышско-Теректинский, проявляющий сейсмическую активность и в настоящее время (Бельтирское землетрясение 2003 г.). Флюидный режим Казандинского массива в значительной степени определялся и обводнённостью магмоконтролирующего разлома. Предполагаемый механизм обводнения приразломного пространства и контролируемых его интрузивов, жильного выполнения трещин, грейзенов – дилатансное нагнетание по Р. Сибсону [20, 21]. Этот динамический процесс включает понятия «модели разломного клапана» и чередующееся изменение давление флюида. На первом этапе при палеосейсмических напряжениях и сдвиговых движениях по магморудолокализующей трещине Р флюида было больше Р литостатического. При таких параметрах флюиды заполняют трещиноватое пространство вокруг трещин на больших площадях, производят пропилитизацию пород. Процесс дилатансного нагнетания флюидов сопровождается увеличением объёма пористости пород. Это как следствие приводит к снижению порового давления, и происходит всасывание флюидов в расширяющийся объём пор. Для объяснение миграции флюидов предложена модель корового волновода [22]. При этом коровые волноводы распространяются до глубин 10...15 км и действуют как насосы. Флюидные растворы, которые двигаются вниз, омывают верхние коровые слои пород, растворяя минералы и загружаясь различными компонентами. На втором этапе, после окончания максимума сейсмических событий, когда Р флюида становится меньше Р литостатического, растворы устремляются из вмещающих пород, поднимаются вверх, проникают в полость магмо-рудолокализующего разлома, насыщают водой всё его пространство и контролирующие интрузивы и отлагают жильные минералы, металлы и другие компоненты. Таким образом, описанный механизм использует энергию тектонических движений в коре и литосфере. Эта энергия достаточна для переноса флюидов на значительные расстояния, насыщения ими гранитоидных массивов (в значительной степени и вадозной водой), обеспечивая проявление и W-типа тетрадного эффекта фракционирования РЗЭ.

Таким образом, анорогенные рибекитовые гранитоиды в Солонешенском рудном районе следует подразделять на два подтипа: 1 – Елиновский, гиперсольвусный, связанный исключительно с плавлением мантийного источника типа эклогитов и гранатовых амфиболитов, и 2 – Казандинский, транссольвусный, связанный со смешением мантийного и корового материала. Для подтипов характерны не только различные соотношения изотопов стронция и неодима, но и различная металлогени-

СПИСОК ЛИТЕРАТУРЫ

- Гусев А.И. Дискриминация анорогенных гранитоидов // Современные наукоёмкие технологии. 2011. № 3. С. 7–8.
- Гусев А.И., Гусев Н.И., Красова А.С. Анорогенные гранитоиды Бутачихинского массива Горного Алтая: геохимия, петрология и оруденение // Успехи современного естествознания. – 2012. – № 4. – С. 222–226.
- Гусев А.И. Петрология и рудоносность анорогенных щелочных гранитоидов Казандинского массива Горного Алтая // Современные наукоёмкие технологии. – 2013. – № 1. – С. 88–93.
- Гусев А.И., Гусев Н.И. Петрология и рудоносность анорогенных щелочных гранитоидов Елиновского массива Горного Алтая // Современные наукоёмкие технологии. – 2013. – № 2. – С. 55–60.
- Anders E., Greevesse N. Abundance of the elements: meteoric and solar // Geochim. Cosmochim. Acta. - 1989. - V. 53. -P. 197-214.
- Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Comochim. Acta. - 1999. -V. 63. - № 3/4. - P. 489-508.
- Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geol. Soc. Amer. Bull. - 1989. - V. 101. - P. 635-643.
- Zhao Z.H. REE and O-Pb-Sr-Nd isotopic compositions and petrogenesis of the Altai granitoids // New Development of Solid Earth Science in Northern Xinjiang. – Beijing: Science Publishing Co, 1993. – P. 239–266.
- Маракушев А.А. Термодинамические факторы образования рудной зональности // Прогнозирование скрытого оруденения на основе зональности гидротермальных месторождений. – М.: Наука, 1976. – С. 36–51.
- Sr-Nd isotopic systematic of granitoids and evolution of continental crust of the Western part of Altai-Sayan fold region / N.N. Kruk, S.N. Rudnev, S.A. Vystavnoi, S.V. Palesskiy // Continental Growth in the Phanerozoic: Evidence from Central Asia. - Novosibirsk: Department «GEO», 2001. - P. 68-72.
- Петрология и рудоносность магмо-рудно-метасоматических систем Солонешенского рудного района Алтая / А.И. Гусев, Н.И. Гусев, Е.М. Табакаева, Е.А. Дзагоева, М.А. Кукоева. – Бийск: АГАО, 2013. – 200 с.

ческая нагрузка: для Елиновского ареала – это уран-редкометалльно-редкоземельная апогранитная и скарновая, а для Казандинского – вольрфраммолибденовое и бериллиевое оруденение грейзенового и жильного геолого-промышленных типов.

- Гусев А.И., Гусев Н.И. Магмо-флюидно-динамическая концепция эндогенного рудообразования на примере Горного Алтая и других регионов // Региональная геология и металлогения. – 2005. – № 23. – С. 119–129.
- Vigneresse J.L. The role of discontinuous magma inputs in felsic magma and ore generation // Ore geology Reviews. - 2007. -V. 30. - P. 181-216.
- Гусев А.И. Эталон синюхинского габбро-гранитного комплекса (Горный Алтай). – Новосибирск: СНИИГГиМС, 2007. – 208 с.
- Петрология и рудоносность магмо-рудно-метасоматических систем Талицко-Бащелакского района Алтая / А.И. Гусев, С.В. Попов, Е.А. Дзагоева, Н.В. Белозерцев. – Бийск: Изд-во БПГУ, 2010. – 205 с.
- Masuda A., Ikeuchi Y. Lanthanide tetrad effect observed in marine environment // Geochim. J. 1979. V. 13. P. 19–22.
- W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit. Central Japan / Y. Takahashi, H. Yoshida, N. Sato, K. Hama, Y. Yusa, H. Shimizu // Chem. Geol. - 2002. - V. 184. - P. 311-335.
- 18. Два типа тетрадного эффекта фракционирования редкоземельных элементов в шошонитовых гранитоидах Кавказских Минеральных вод / А.И. Гусев, А.А. Гусев, Н.И. Гусев, Е.А. Гусев // Современные наукоёмкие технологии. 2011. № 4. С. 17–22.
- Гусев А.И. Петрология адакитовых гранитоидов. М.: Изд-во РАЕ, 2014. – 165 с.
- Sibson R.H., McMoore J., Rankin R.H. Seismic pumping a hydrothermal fluid transport mechanism // J. Geol. Soc. 1975. V. 131. P. 653–659.
- Sibson R.H., Robert F., Poulsen K.H. High angle reverse faults, fluid pressure cycling, and mesothermal gold-quarts deposits // Geology. - 1988. - V. 16. - P. 551-555.
- Dmitrievsky A.N., Balanyuk I.E., Sorokhtin O.E. Model of methane hydrate formation in Mid-Ocean Ridges // Geophys. Research Abstracts. - 2003. - V. 5. - P. 00011-00012.

Поступила 24.03.2014 г.

UDC 553.3/.4.078:553.2:551.73

PETRO-GEOCHEMICAL PECULIARITIES AND ORE MINERALIZATION OF TWO SUBTYPES OF ANOROGENIC GRANITOIDS IN MOUNTAIN ALTAI

Anatoliy I. Gusev,

Dr. Sc., Shukshin Altai State Academy of Education, 11, Sovetskaya street, Biysk, 659333, Russia. E- mail: anzerg@mail.ru

Aleksandr F. Korobeynikov,

Dr. Sc., Tomsk Polytechnic University, 30, Lenin avenue, Tomsk, 634050, Russia. E-mail: lev@tpu.ru

The urgency of the discussed issue is caused by the need of researching petro-geochemical features of anorogenic granitoids and their ore mineralization.

The main aim of the study: substantiation of different ore mineralization of two subtypes of granitoids in Mountain Altai on their petro-geochemical peculiarities.

The methods used in the study: The chemical composition on the major petrogenic elements was determined by silicate assay by X-ray fluorescence (XRF) techniques. Rare elements were determined by inductively coupled plasma on the mass spectrometry «OPTIMA-4300», for Cu, Zn, Pb, Li – by the ISP-AES method, the rest elements including REE were determined by the ISP-MS method in the VSE-GEI Laboratory (Saint-Petersburg). Calculation of tetrad effect of REE fractionation was carried using the W. Irber method.

Results: The authors have determined two subtypes of anorogenic granitoids of Soloneshensky ore district; they were generated under complex conditions of mantle-crust interaction. Different sources of mantle and crust substrate melting for gypersolvus and transsolvus granites were determined. Gypersolvus riebeckite leucogranite of Elinovskii massive were formed with tetrad effect of M-type REE fractionation and generated albitites and skarn uranium rare metals rare earth ore mineralization, but transsolvus riebeckite leucogranites of Kazandinsky massive were accompanied by tetrad effect of W-type REE fractionation and generated lode and greisen tungsten-molibdenium and beryllium ore mineralization.

Key words:

Anorogenic granitoids, gypersolvus and transsolvus granites, mantle-crust interaction, tetrad effect of fractionation of REE, W, Mo, Be, U, Zr, REE.

REFERENCES

- Gusev A.I. Diskriminatsiya anorogennykh granitoidov [Discrimination of anorogenic granitoids]. Sovremennye naukoemkie tekhnologii, 2011, no. 3, pp.7–8.
- Gusev A.I., Gusev N.I., Krasova A.S. Anorogennye granitoidy Butachikhinskogo massiva Gornogo Altaya: geokhimiya, petrologiya i orudenenie granitoidov [Anorogenic granitoids of Butachikhinsky mass of Gorny Altai: geochemistry, petrology and mineralization]. Uspekhi sovremennogo estestvoznaniya, 2012, no. 4, pp. 222-226.
- Gusev A.I. Petrologiya i rudonosnost anorogennykh shchelochnykh granitoidov Kazandinskogo massiva Gornogo Altaya granitoidov [Petrology and mineralization of androgenic alkaline granitoids of Kazadinsky mass in Gorny Altai]. Sovremennye naukoemkie tekhnologii, 2013, no. 1, pp. 88-93.
- Gusev A.I., Gusev N.I. Petrologiya i rudonosnost anorogennykh shchelochnykh granitoidov Elinovskogo massiva Gornogo Altaya granitoidov [Petrology and mineralization of androgenic alkaline granitoids of Elinovsky mass in Gorny Altai]. Sovremennye naukoemkie tekhnologii, 2013, no. 2, pp. 55–60.
- Anders E., Greevesse N. Abundance of the elements: meteoric and solar. *Geochim. Cosmochim. Acta*, 1989, vol. 53, pp. 197–214.
- Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. *Geochim. Comochim. Acta*, 1999, vol. 63, no. 3/4, pp. 489-508.
- Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., 1989, vol. 101, pp. 635–643.
- Zhao Z.H. REE and O-Pb-Sr-Nd isotopic compositions and petrogenesis of the Altai granitoids. New Development of Solid Earth Science in Northern Xinjiang. Beijing, Science Publishing Co, 1993, pp. 239–266.

- Marakushev A.A. Termodinamicheskie factory obrazovaniya rudnoy zonalnosti granitoidov [Thermodynamic factors of ore zonality formation]. Prognozirovanie skrytogo orudeneniya na osnove zonalnosti gidrotermalnykh mestorozhdeniy granitoidov [Prediction of covered mineralization on the basis of zonality of hydrothermal deposits]. Moscow, Nauka Publ., 1976, pp. 36–51.
- Kruk N.N., Rudnev S.N., Vystavnoi S.A., Palesskiy S.V. Sr-Nd isotopic systematic of granitoids and evolution of continental crust of the Western part of Altai-Sayan fold region. *Continental Growth in the Phanerozoic: Evidence from Central Asia*. Novosibirsk, Department «GEO», 2001, pp. 68-72.
- Gusev A.I., Gusev N.I., Tabakaeva E.M., Dzagoeva E.A., Kukoeva M.A. Petrologiya i rudonosnost magmo-rudno-metasomaticheskikh sistem Soloneshenskogo rudnogo raiona Altaya granitoidov [Petrology and mineralization of magma-ore-metasomatic systems of Soloneshensky ore area of Altai]. Biysk, AGAO Publ., 2013, 200 p.
- Gusev A.I., Gusev N.I. Magmo-fluido-dinamicheskaya kontseptsiya endogennogo rudoobrazovaniya na primere Gornogo Altaya i drugikh regionov granitoidov [Magma-fluid-dynamic concept of endogenic mineralization by the example of Gorny Altai and other regions]. *Regionalnaya geologiya i metallogeniya*, 2005, no. 23, pp. 119–129.
- Vigneresse J.L. The role of discontinuous magma inputs in felsic magma and ore generation. Ore geology Reviews, 2007, vol. 30, pp. 181-216.
- Gusev A.I. Etalon Sinyukhinskogo gabbro-granitnogo kompleksa (Gorny Altay) granitoidov [Etalon of Sinyukhinsky gabbro-granite complex (Gorny Altai)]. Novosibirsk, SNIIGGiMS Publ., 2007, 208 p.
- Gusev A.I., Popov S.V., Dzagoeva E.A., Belozertsev N.V. Petrologiya i rudonosnost magmo-rudno-metasomaticheskikh sistem Talitsko-Nashchelakskogo rayona Altaya granitoidov [Petrology and

mineralization of magma-ore-metasomatic systems of Talitsk-Bashchelaksky area of Altai]. Biysk, BPSU Publ., 2010. 205 p.

- Masuda A., Ikeuchi Y. Lanthanide tetrad effect observed in marine environment. *Geochim. J.*, 1979, vol. 13, pp. 19–22.
- Takahashi Y., Yoshida H., Sato N., Hama K., Yusa Y., Shimizu H. W- and M-type tetrad effects in REE patterns for waterrock systems in the Tono uranium deposit. Central Japan. *Chem. Geol.*, 2002, vol. 184, pp. 311–335.
- 18. Gusev A.I., Gusev A.A., Gusev N.I., Gusev E.A. Dva tipa tetradnogo effekta fraktsionirovaniya redkozemelnykh elementov v shoshonitovykh granitoidakh Kavkazskikh Mineralnykh Vod granitoidov [Two types of tetrad effect of rare earth element fractioning in granitoids of Kuakas Mineral waters]. Sovremennye naukoemkie tekhnologii, 2011, no. 4, pp. 17–22.
- Gusev A.I. Petrologiya adakitovykh granitoidov granitoidov [Petrology of granitoids]. Moscow, RAE Publ., 2014. 165 p.
- Sibson R.H., McMoore J., Rankin R.H. Seismic pumping a hydrothermal fluid transport mechanism. J. Geol. Soc., 1975, vol. 131, pp. 653–659.
- Sibson R.H., Robert F., Poulsen K.H. High angle reverse faults, fluid pressure cycling, and mesothermal gold-quarts deposits. *Geology*, 1988, vol. 16, pp. 551–555.
- Dmitrievsky A.N., Balanyuk I.E., Sorokhtin O.E. Model of methane hydrate formation in Mid-Ocean Ridges. *Geophys. Re*search Abstracts, 2003, vol. 5, pp. 00011-00012.

УДК 552.578:550.4(571.1/.6)

К ВОПРОСУ О ВЫДЕЛЕНИИ ВЫСОКОУГЛЕРОДИСТЫХ ПОРОД В ОТЛОЖЕНИЯХ ТРИАСА И ЮРЫ ЗАПАДНОЙ СИБИРИ ПО РЕЗУЛЬТАТАМ ЛИТОГЕОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ РАЗРЕЗА СВЕРХГЛУБОКОЙ СКВАЖИНЫ СГ-7

Столбов Юрий Михайлович,

канд. техн. наук, ст. науч. сотрудник кафедры геологии и разведки полезных ископаемых Института природных ресурсов ТПУ, Россия, 634050, г. Томск, пр. Ленина, д. 30. E-mail: StolbovaNF@ignd.tpu.ru

Столбова Нэля Федоровна,

канд. геол.-минерал. наук, доцент кафедры геологии и разведки полезных ископаемых Института природных ресурсов ТПУ, Россия, 634050, г. Томск, пр. Ленина, д. 30. E-mail: StolbovaNF@ignd.tpu.ru

Актуальность исследования обусловлена необходимостью получения дополнительной геологической информации о нефтегазоносных отложения триаса и юры Западной Сибири, вскрытых сверхглубокой скважиной СГ-7.

Цель работы: выделить высокоуглеродистые породы в разрезе сверхглубокой скважины современными аналитическими методами. **Методы исследования:** литолого-петрографические и ядерногеохимические. На их основе были изучены коллекции пород из керна сверхглубокой скважины СГ-7. Под бинокулярным микроскопом и в петрографических шлифах изучено 606 образцов. Столько же измерений концентраций урана и глинозема, отображающих геохимические особенности пород, было выполнено ядерно-физическими методами анализа. Полученные результаты исследований были рассмотрены с учетом ландшафтных фаций седиментогенеза и геохимических фаций диагенеза. Они нашли отображение в таблице, показывающей связь возраста изученных отложений с названием свит и толщ, интервалами их проявлений с указанием количества проанализированных образцов и проб их представляющих. Анализ изложенных в таблице данных позволяет сделать ряд выводов об условиях формирования отложений, вскрытых сверхглубокой скважиной. Это ландшафтные фации: континентальные, переходные к морским и морские – озерные, озерно-болотные, дельтовые, русловые, прибрежно-морские, лагунные, псевдоабиссльные. Это и геохимические фации: со сменяющимся окислительно-восстановительным режимом диагенеза – от окислительных до резковосстанови тельных. Последние характерны для захоронения органического вещества и последующего формирования высокоуглеродистых пород. В результате исследований установлено, что породы тюрьяхинской (триас) и баженовской (верхняя-юра) свит, накапливающие углеродистое вещество и уран, формируются в условиях аридного седиментогенеза и обстановках резковосстановительных фации диагенеза.

Результаты: установлены границы и условия формирования высокоуглеродистых пород тюрьяхинской (триас) и баженовской (верхняя юра) свит.

Ключевые слова:

Высокоуглеродистые породы, уран, тюрьяхинская свита, баженовская свита, аридный седиментогенез, диагенез резковосстановительный.

Введение

С целью уточнения геологического строения и открытия новых месторождений углеводородного сырья в более глубоких горизонтах мезозоя и палеозоя на севере Западно-Сибирской плиты была пробурена сверхглубокая параметрическая скважина СГ-7 в районе Ен-Яхинского прогиба, с которым связаны крупнейшие газовые месторождения: Уренгойское, Медвежье и Ямбургское.