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Abstract. In this paper, the results of the surface functionalization of the Ti6Al4V alloy 

scaffolds with different structures for use as a material for medical implants are presented. 

Radio frequency magnetron sputtering was used to modify the surface of the porous structures 

by deposition of the biocompatible hydroxyapatite (HA) coating with the thickness  

of 860±50 nm. The surface morphology, elemental and phase composition of the HA-coated 

scaffolds were studied. According to energy-dispersive X-ray spectroscopy, the stoichiometric 
ratio of Ca/P for flat, orthorhombic and cubic scaffolds is 1.65, 1.60, 1.53, respectively, which 

is close to that of stoichiometric ratio for HA (Ca/P = 1.67). It was revealed that this method of 

deposition makes it possible to obtain the homogeneous crystalline coating both on the dense 

sample and in the case of scaffolds of complex geometry with different lattice cell structure. 

1. Introduction 

Additive manufacturing (AM), also called three-dimensional printing, allows fabricatingcomplex and 

multi-functional metal component from computer aided design models [1-3]. EBM is one of the 

powder-bed fusion AM technologies. This process shows great promise for making medical devices 
and industrial components through excellent shape control and strength to weight ratio [4-6]. This 

technology is suitable for producing near-net-shape small to medium volume metallic parts with 

complex geometries [7-10]. Additionally, the three-dimensional construct provides the necessary 

support for cells to proliferate and maintain their differentiated function, leading to superior bone 
regeneration and hard tissue replacement [11-13]. 

Titanium and its alloys (e.g., Ti6Al4V) are widely used as materials for the implants in orthopedics 

and dentistry. Porous Ti6Al4V scaffolds offer the following advantages over non-porous scaffolds: (i) 
a greater surface area for bone contact which enables vascularization, (ii) the possibility for bone 

ingrowth into the pores, improving mechanical interlocking between implant and bone, and (iii) 

reduced Young’s modulus reducing the mismatch in the stiffness of bone and implant and thus 
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reducing the risk of stress shielding-induced bone loss [14-17]. Bioceramic layers based on calcium 

phosphate (CaP) have been applied as coatings on titanium-based implants, most often in the form of 

hydroxyapatite (HA), which has resulted in superior osteointegration. Titanium-based implants have 

been coated with HA due to its bioactivity, that is, ability to form a direct chemical bond with the 
surrounding bone [18-20]. 

The aim of this study was fabricating different cellular Ti6Al4V structures with a controllable 

interconnected porosity by EBM and to determine the effect of the deposited HA coatings onto mesh 
scaffolds. 

2. Materials and methods 

Dense (R1), porous (orthorhombic (R2) and cubic cell (R3)) scaffolds (figure 1) of Ti6Al4V alloy 

were fabricated by EBM system (Arcam
®
EBM, Mölndal, Sweden). Porous titanium alloy scaffolds are 

shaped as solid thin walled cups having outer diameter of 7 mm and overall height of 5 mm with the 

lattice inside. Dense scaffolds are cylindrical with the same outer dimensions. These structures were 

built layer-by-layer using the precursor Ti6Al4V (ELI) powder, with an average particle diameter of 
70μm.Corresponding EBM equipment was described in detail earlier [21]. Briefly, the EBM system is 

a powder bed beam based AM system using electron beam to condition and melt metal powder layers. 

In each layer powder is melted according to the CAD model and chosen process parameter settings. 
Electron gun of ARCAM A2 machine used in this study works at 60 kV, 2 kW. Process parameter 

settings were chosen according to the manufacturer specification for Ti6Al4V with the temperature of 

material during manufacturing kept at 730 
o
C. All samples were carefully blasted in the standard 

ARCAM
®
 powder recovery system, using the air flow containing the precursor powder. 

 

 
Figure 1. Images of 3D macroporous scaffolds 

with the different type of cells. 

 
The HA (Ca10(PO4)6(OH)2) coating layers were formed by radio-frequency (RF) magnetron 

sputtering deposition method on the Ti6Al4V alloy. A powder of HA was prepared using 

mechanochemical activation which was carried out in a planetary mill APF using two steel cylinders 
750 mL in volume each. Steel balls with the mass of 1 kg (the mass ratio of balls to the mixture was 

10:1.1) were loaded into each water-cooled cylinder. The frequency of the rotation of cylinders in the 

activator was 900 min
-1

. The power of the mill allowed us to obtain the HA powder in the 

nanocrystalline state without subsequent thermal treatment [22]. After mechan-ochemical synthesis 
HA powder was used as a precursor to prepare a target for sputtering. The RF-power (400 W), argon 

gas pressure (working pressure 0.4 Pa, base pressure 10
−4

 Pa) and the distance between the target and 

substrate (40 mm) were kept constant in all experiments (deposition time was 8 hours). The thickness 
of HA film (860±50 nm) was determined using the Spectral ellipsometry complex Ellipse 1891 SAG. 

The surface morphology was studied by scanning electron microscopy (SEM, ESEM Quanta 400 

FEG).The energy-dispersive X-ray spectroscopy (EDX, Genesis 4000, SUTW-Si(Li) detector) was 
used for studying the elemental composition of the coating. 

X-ray powder diffractometer with Cu Kα radiation (α=1.54 Å; 40 kV and 40 mA) was used to 

determine the internal structure and phase composition of the studied samples. The films were 

analyzed using Bragg-Brentano mode with Cu Kα1 radiation at 2θ from 5 to 90° with a step size of 
0.01°. 
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3. Results and discussion 

Typical microscopy images of the samples fabricated by EBM before (figure 2, a-c) and after (figure 

4, a-c, figure 5,a-c) deposition of the HA coatings and EDX spectra of the films, prepared on the 

Ti6Al4V alloy surface are shown in figure 2.It was found that the surface of the coated scaffold has a 
well-defined grain structure, the deposited HA layer is homogeneous without microcracks and any 

other visible defects. 

   
a b c 

 
 

 

d e f 
Figure 2. SEM images of scaffolds without treatment (a-c) and with coating based on HA(R1), 

EDX spectrum (e) of scaffolds with HA film. 
 

According to EDX results, the stoichiometric ratio of Ca/P is 1.65, which is close to that for HA 
(Ca/P = 1.67).  

The typical XRD-pattern of Ti6Al4V alloy prepared via additive manufacturing and HA coating 

fabricated on its surface via RF magnetron sputtering is shown in figure 3. 

 
 

Figure 3. The typical XRD patterns of pure Ti and 

the composite of titanium–HA coating. 
 

The peaks at 31.8º (211), 32.2º (112) and 34.0º (202) corresponded to the diffraction pattern of the 

HA with the hexagonal crystalline structure. In addition, low intensitypeaks at 22.9º (111) and 25.9º 
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(002) are also observed in the spectra. The most intensive peaks in the HA spectrum are at 31.8º (211) 

and 32.2º (112), which have also been observed elsewhere [23]. The deposition mechanism of HA in 

magnetron sputtering method can be described as the formation of amorphous calcium phosphate 

clusters, their conversion into HA nano-domains and crystallization of the grain domains with a 
preferential orientation along the HA [002] direction [24]. 

Figures 4a-4c and 5a-5c present SEM images of the HA-coated scaffolds with lattices R2 and R3, 

respectively. According to the SEM results (figure s4c and5c), a uniform grain structure is observed at 
the microlevel without defects and cracks. 

    
a b c d 

Figure 4. SEM images (a-c) and EDX spectrum (d) of lattice cell R2 scaffold with HA coating. 
 

 A typical EDX spectrum of the HA-coated scaffolds is shown in figures 4d and 5d. The study 

shows the presence on the surface of Ca, P and O. The Ca/P ratio for the coating prepared on scaffolds 
with R2 and R3 lattice cell types were 1.60 and 1.53, respectively. According to the X-ray 

Photoelectron Spectroscopyresults presented in our previous study, the Ca/P ratio for nanocrystalline 

HA coatings deposited via the RF magnetron sputtering technique with comparable process 

parameters was reported in the range of 1.65–1.86 [11, 12]. 

    

a b c d 

Figure 5. SEM images (a-c) and EDX spectrum (d) of lattice cell scaffold R3 with HA coating. 

Figure 6 presents a map of the elemental distribution within the formed HA layer for the porous 

samples with lattices of the type R2 and R3, respectively. In this case, a uniform distribution of the 
coating elements along the lattice cell surface is observed. Earlier [25], it was shown, that the method 

of RF magnetron deposition allows depositing biocompatible coating not only on the outer surface of a 

three-dimensional sample, but also on the inner layers of the scaffolds. 

    
R2 R3 

Figure 6. EDX element mapping data of deposited coatings. 
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4. Conclusions 

RF magnetron sputtering was used to prepare an HA coating with the thickness of 860±50 nm on the 

surface of dense and reticulated bulk scaffolds prepared by EBM, powder bed electron beam- based 

AM technology. Investigation of the surface morphology of the scaffolds with different lattice cell 
types revealed that the grain structure is formed as a result of the deposition of the CaP layer. X-ray 

analysis showed the presence of an HA phase in the coating. Thus, RF magnetron sputtering is a 

promising method to deposit CaP layers on the Ti64 alloy scaffolds with the complex structure 
obtained by additive manufacturing. 
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