Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль: <u>13.06.01 Электро- и теплотехника / 05.14.14 Тепловые</u> электрические станции, их энергетические системы и агрегаты

Школа: Инженерная школа энергетики

Отделение: Научно-образовательный центр И.Н. Бутакова

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научно-квалификационной работы		
Term my mo resumption proofs.		
Тепловые режимы объектов теплоснабжения с раздельными источниками теплоты		
тепловые режимы объектов теплоснаожения с раздельными источниками теплоты		

УДК 697.34.016

Аспирант

Группа	ФИО	Подпись	Дата
A5-46	Кондаков Александр Александрович		

Руковолителя профиля полготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Директор ИШЭ	Матвеев Александр	к.т.н.		
	Сергеевич			

Руководитель отделения

т уководитель отделения	1 ykobodni enb orgenemia			
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Руководитель НОЦ И.Н.	Заворин Александр	д.т.н.,		
Бутакова	Сергеевич	профессор		

Научный руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Главный научный сотрудник НОЦ И.Н. Бутакова	Кузнецов Гений Владимирович	д.фм.н.		

КРАТКОЕ СОДЕРЖАНИЕ НАУЧНО-КВАЛИФИКАЦИОННОЙ РАБОТЫ

В последние годы, вследствие высоких требований к энергосбережению, все большее распространение получать комбинированные начинают системы теплоснабжения. В такой системе часть тепловой энергии помещение получает от традиционного централизованного радиаторного отопления, а часть энергии поступает с поверхности теплого пола, который работает от альтернативного (возобновляемого) источника теплоты (например, теплонасосная установка). При поддержании комфортной температуры воздуха в помещении тепловая нагрузка на традиционный источник отопления должна компенсироваться за счет альтернативного. Наличие двух раздельных источников теплоты, их расположение и температуры, а также внешние условия (температура внешней среды, материалы стен) определяют тепловой режим помещения. Соответственно, при оценке характеристик теплового режима в такой системе существует необходимо математической построение модели сопряженного конвективнокондуктивного теплопереноса при работе двух источников теплоты.

Целью работы является математическое моделирование сопряженного теплообмена в замкнутой прямоугольной области с двумя раздельными источниками теплоты и сравнение тепловых режимов помещения при различных условиях работы источников.

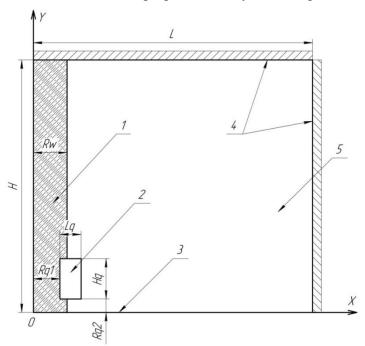


Рисунок 1. Постановка задачи

1 - твердая теплопроводная стенка, 2- конвективный источник, 3- нижняя граница расчетной области, 4- тепловая изоляция, 5- область газовой фазы

За величину, характеризующую тепловой режим в момент времени τ принята среднеарифметическая температура газовой области (5).

Рассматривается двухмерная задача сопряженного естественно-конвективного теплообмена в прямоугольной области с размером $L \times H$ в декартовой системе координат (рис.1).

В качестве источников тепла используются две изотермические поверхности: конвективный источник (2) с температурой T_{ist} , теплый пол (3) с температурой T_f . Их геометрические размеры известны и приведены на рисунке 1 (R_{q1}, R_{q2}, H_q, L_q). Кроме того, левая граница расчетной области, толщиной R_w , имеет контакт с окружающей средой с заданной температурой и коэффициентом теплоотдачи.

Процесс тепломассопереноса во всей расчетной области описывается двумерными нестационарными уравнениями Буссинеска для вязкой несжимаемой жидкости. В качестве метода дискретизации системы используется метод контрольного объема со степенным законом изменения искомой величины между узлами пространственной сетки и неявной схемой аппроксимации по времени. Связь компонент скорости с давлением осуществляется с помощью алгоритма SIMPLE Патанкара — Сполдинга. Исходя из требований алгоритма, применяется равномерная шахматная сетка с расположением граней контрольного объема посередине между узлами.

Решением системы дифференциальных уравнений являются поля скоростей и температур на всей расчетной области. Совокупность данных физических величин позволяет сравнивать тепловые режимы помещений при различных условиях работы источников теплоты (радиатора и теплого пола).

В работе представлена математическая модель сопряженного конвективно-кондуктивного теплопереноса в замкнутой прямоугольной области с двумя источниками теплоты. По результатам расчетов построены тепловые режимы помещения при различных температурах поверхностей пола и традиционного источника отопления. Проведена оценка возможности замещения тепловой нагрузки между раздельными источниками теплоснабжения на основе анализа средней температуры воздуха при установившихся режимах движения.