УДК 541.14

ИССЛЕДОВАНИЕ КИНЕТИЧЕСКИХ ЗАКОНОМЕРНОСТЕЙ ОБРАЗОВАНИЯ ПРОДУКТОВ В ПРОЦЕССЕ ФОТОЛИЗА АЗИДА СВИНЦА

Э.П. Суровой, Л.Н. Бугерко, С.В. Расматова

Кемеровский государственный университет

E-mail: epsur@kemsu.ru

Методами масс-спектрометрии, спектрофотометрии и электронной микроскопии установлено, что предварительное облучение азида свинца светом (λ =365 нм, I=2·10¹⁵ квант·см⁻²·C⁻¹) при давлении 1·10⁻⁵ Па наряду с увеличением скорости фотолиза и фототока приводит к появлению новой длинноволновой (до λ =600 нм) области спектральной чувствительности. Определены константы скорости фотолиза азида свинца. В результате измерений контактной разности потенциалов, вольт-амперных характеристик, фото-ЭДС, фототока установлено, что при фотолизе азида свинца формируются микрогетерогенные системы PbN₆(Aм) — Pb (продукт фотолиза). Показано, что лимитирующей стадией образования фотолитического свинца является диффузия анионных вакансий к нейтральному центру Pb_n^o.

Ранее [1-5] было установлено, что выделяющиеся при разложении твердофазные продукты оказывают существенное влияние на фотохимические и фотоэлектрические свойства азидов тяжелых металлов. Исследование автокаталитического и сенсибилизирующего влияния твердофазных продуктов на фотолиз азидов серебра и таллия [6–9], а также параллельное изучение фотолиза и электрофизических свойств гетеросистем азид-металл (азидполупроводник) [10-17] позволили существенно продвинуться в направлении понимания механизма фотолиза неорганических азидов при глубоких степенях превращения. В настоящем сообщении представлены результаты работы, направленной на исследование кинетических и спектральных закономерностей образования продуктов в процессе фотолиза азида свинца в зависимости от интенсивности падающего света, выяснение энергетической структуры контакта азид свинца – продукт фотолиза и причин, вызывающих наблюдаемые изменения фотохимической и фотоэлектрической чувствительности азида свинца продуктом разложения.

Объекты и методы исследования

Азид свинца марки Ам (PbN₆(Ам)) синтезировали методом двухструйной кристаллизации, медленным (в течение 60 мин.) сливанием "струя в струю" водных 0,2 н растворов дважды перекристаллизованного технического азида натрия и нитрата свинца (квалификации х.ч.) при pH 3 и T=293 К [18]. Образцы для исследований готовили прессованием таблеток PbN₆(Ам) массой 150 мг при давлении 1.10-3 кг см-2, либо путем нанесения 150 мг навесок PbN₆(Ам) на кварцевую пластинку в виде спиртовой суспензии, с последующей отгонкой спирта в вакууме. Измерения скорости фотолиза (V_{ϕ}), фототока (i_{ϕ}) и фото-ЭДС (U_{ϕ}) образцов проводили при давлении 1·10⁻⁵ Па. Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. В качестве датчика при измерении V_{Φ} использовали лампу РМО-4С омегатронного массспектрометра ИПДО-1, настроенного на частоту регистрации азота (рис. 1). Измерения i_{ϕ} и U_{ϕ} проводили на установке, включающей электрометрический вольтметр В7-30, либо электрометр TR-1501 [15]. Спектры диффузного отражения (ДО) измеряли при давлении 101,3 кПа на спектрофотометре SPECORD-M40 с приставкой на отражение 8°d и при давлении 1·10⁻⁴ Па [16]. Контактную разность потенциалов (КРП) между азидом свинца, свинцом и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [19]. Топографию твердофазных продуктов фотолиза азида свинца изучали методом угольных реплик на электронном микроскопе УЭМВ-1000.

Рис. 1. Схема установки для изучения фотохимической чувствительности твердых неорганических солей: 1) ячейка, 2) насос ВН-461М, 3) насос НОРД-250, 4) блок питания насоса, 5) вентиль ДУ-24, 6) вентиль ДУ-6, 7) манометр термопарный ПМТ-2, 8) манометр ионизационный ПМИ-2, 9) вакууметр ВИТ-1П, 10) масс-спектрометр ИПДО-1, 11) датчик РМО-4С, 12) потенциометр ЭПП-09, 13) частотомер ЧЗ-12

Результаты и обсуждение

В результате анализа кинетических закономерностей фотолиза PbN₆(Aм) было установлено, что при облучении образцов светом λ =365 нм в области интенсивного освещения (I>1·10¹⁴ квант·см⁻²·с⁻¹) на кинетических кривых V_{ϕ} можно выделить несколько участков: начальный (I), стационарный (II), возрастания (III), насыщения – (IV) и спадания (V) (рис. 2, кривая 1). Снижение интенсивности падающего света приводит к уменьшению V_{ϕ} , а также к

увеличению продолжительности участков кинетических кривых. На рис. 3 (кривые 1,2) приведены спектральные распределения V_{Φ} и i_{Φ} , построенные по стационарным значениям V_{Φ} и i_{Φ} . Видно, что длинноволновый край V_{Φ} и i_{Φ} PbN₆(Ам) находится при 420 нм. Различные виды предварительных обработок, которые приводят к частичному разложению азида свинца (прогрев в вакууме 1·10-5 Па в интервале температур 340...420 К, облучение светом, старение образцов, обработка в восстановительной среде), уменьшают или полностью устраняют начальный максимум (участок 1) на кинетических кривых V_{Φ} . Повторное (после прерывания света на I и II участках) освещение образцов не приводит к заметному изменению V_{ϕ} на II, III, IV участках кинетических кривых V_{Φ} (рис. 2, кривые 2, 3) и кривых спектрального распределения V_{Φ} и i_{Φ} . Предварительное экспонирование образцов в течение 10 мин приводит к монотонному увеличению V_{ϕ} до постоянных значений (рис. 2, кривая 4). При этом наряду с увеличением V_{Φ} и i_{Φ} в собственной области поглощения PbN₆(Ам) на кривых спектрального распределения V_{Φ} и i_{Φ} , появляется новая область фоточувствительности, длинноволновый порог которой простирается до 600 нм (рис. 3 кривые 3, 4).

Кинетические кривые скорости фотолиза (V₀) Рис. 2. PbN_6 (Ам) при λ =365 нм и интенсивности падающего света 2·10¹⁵ квант см⁻²·С⁻¹ до (1) и после прерывания освещения на I (2), II (3), IV (4) и V (5) участках кинетических кривых V₀. Стрелками обозначены моменты выключения света

Более продолжительное освещение образцов приводит к снижению V_Ф. В результате электронномикроскопических и спектрофотометрических исследований было установлено, что наблюдаемое понижение фоточувствительности PbN₆(Ам) связано с затемнением поверхности образца твердофазным продуктом фотолиза и, как следствие, с уменьшением числа поглощенных PbN₆(Ам) квантов света. После прекращения экспонирования на разных участках кинетических кривых скорости фотолиза наблюдается участок темнового постгазовыделения (рис. 2). Видно, что кривые темнового постгазовыделения состоят из двух участков "быстрого" и "медленного". С увеличением време-

ни экспонирования и интенсивности падающего света продолжительность темнового постгазовыделения возрастает. Причем, по мере понижения температуры и интенсивности падающего света уменьшается временной интервал "медленной" составляющей темнового постгазовыделения. Установлено, что независимо от интенсивности падающего света и времени предварительного экспонирования кривые темнового постгазовыделения спрямляются в координатах $\ln C_{N2} = (\tau)$. По тангенсу угла наклона зависимости ln $C_{N2}=(\tau)$ оценили значения констант скорости (k) после прерывания освещения на разных участках кинетических кривых V_ф (табл. 1).

Таблица 1. Константы скорости процесса, ответственного за постгазовыделение k, с-

Образец	Участки кинетической кривой $V_{_{\! \Phi}}$				
		=	IV		
PbN ₆ (Ам)	4,32±0,16)·10 ⁻²	(3,10±0,15)·10 ⁻²	(2,40±0,12)·10 ⁻³		

При исследовании топографии твердофазного продукта фотолиза азида свинца, установлено, что при интенсивностях $I=4.10^{14}...8.10^{15}$ квант см⁻² с⁻¹ и временах облучения образцов, соответствующих достижению участков I и II кинетической кривой *V*_Ф формируются частицы преимущественно размером 4...6 нм сферической формы.

Рис. З. Спектральное распределение скорости фотолиза (1, 3), фототока (2, 4) и фото-ЭДС (U₀) (5) до (1, 2) и после облучения PbN₆(Ам) (3-5) при I=2·10¹⁵ квант см⁻²·C⁻¹

Количество и размер частиц увеличиваются по мере роста интенсивности падающего света и времени экспонирования. Длинноволновый край ДО азида свинца находится при λ =410 нм (рис. 4). Обработка образцов светом λ =365 нм в интервале интенсивностей *I*=4·10¹⁴...8·10¹⁵ квант·см⁻²·с⁻¹, наряду с отсутствием заметных эффектов в собственной области поглощения азида свинца, приводит к существенному изменению вида спектральных кривых ДО в области λ ≥410 нм.

Рис. 4. Изменение отражательной способности азида свинца в зависимости от времени облучения светом λ =380 нм при I = 3·10¹⁵ квант·см⁻²·с⁻¹

При временах облучения, соответствующих реализации I и II участков на кинетических кривых V_{ϕ} , наряду с уменьшением ДО в диапазоне 400...800 нм на спектральных кривых ДО, проявляется максимум при *λ*≈440 нм. Дальнейшее увеличение времени световой обработки до участка (III) приводит к уширению полосы и смещению максимума в длинноволновую область спектра. Установлено совпадение кинетических зависимостей изменения количеств фотолитического металла (Сме), рассчитанных по результатам измерений кинетических кривых V_ф при различных интенсивностях падающего света, со значениями площадей (S), соответствующих изменению ДО PbN₆(Ам) в процессе облучения. В табл. 2 приведены константы скорости фотолиза PbN₆(Ам) оценённые по тангенсу угла наклона зависимостей $\ln S=(\tau)$ и $\ln C_{Me}=(\tau)$.

Таблица 2. Константы скорости фотолиза PbN₆(AM), рассчитанные по кинетическим кривым скорости фотолиза (k₁₀) и спектрам диффузного отражения (k₁₀)

/·10 ⁻¹⁵ , квант∙см ⁻² с ⁻¹	$k_{10} \times 10^2$, c ⁻¹	$k_{1D0} \times 10^2$, C ⁻¹
600	1,56 ± 0,12	1,36±0,10
18	2,00 ± 0,15	1,90 ± 0,15
50	2,30±0,20	2,10 ± 0,20
1,4	5,50±0,35	5,40±0,40
2,0	5,70±0,40	$5,60 \pm 0,45$

Полученные в настоящей работе и ранее [15–18] данные свидетельствуют, прежде всего, о том, что основными продуктами фотолиза PbN₆(Ам) в условиях высокого вакуума являются металлический свинец и газообразный азот. Причем, продукты фотолиза PbN₆(Ам) образуются в стехиометрическом соотношении и, в основном, на поверхности образцов, а наблюдаемые в резуль-

тате облучения изменения на спектральных кривых ДО PbN₆(Ам) (рис. 4) кинетических кривых и кривых спектрального распределения V_{Φ} и i_{Φ} обусловлены образованием частиц свинца (преимущественно со средним диаметром \approx 4 нм).

Для выяснения механизма влияния свинца на фотолиз азида свинца были измерены вольтамперные характеристики (BAX), U_{ϕ} гетеросистем PbN₆(Am) – Pb (продукт фотолиза) и КРП.

Таблица 3. Контактная разность потенциалов между азидом свинца, свинцом и относительным электродом из платины

	КРП, В				
Образец	Давление, Па				
	1.10⁵	1.10-5	1·10 ⁻⁵ *	1·10 ⁻⁵ **	
PbN ₆ (Ам)	+0,28	+0,46	+1,21	+0,56	
Pb	+0,58	+0,59	+0,59	-	

*После предварительной тепловой обработки при T=350 К в течение 90 мин.

** После предварительного фотолиза при λ=365 нм, I=2·10¹⁵ квант·см⁻²·C⁻¹

Из табл. 3 видно, что фотолиз PbN₆(Ам) приводит к уменьшению значений КРП, причем значения КРП для образцов, подвергнутых фотолизу, удовлетворительно совпадают с измеренными для искусственно нанесенного свинца [19]. Из анализа ВАХ и результатов измерений КРП было установлено, что в области контакта PbN₆(Ам) – Pb (из-за несоответствия между работами из контактирующих партнеров) возникает антизапорный электрический слой-контакт PbN₆(Ам) – Pb не проявляет выпрямляющих свойств. Из рис. 3 видно, что полярность U_{Φ} , оставаясь неизменной по всему спектру, соответствует отрицательному знаку со стороны азида свинца, а кривые спектрального распределения U_{Φ} , V_{Φ} , i_{Φ} коррелируют друг с другом. Генерация U_Ф прямо свидетельствует о формировании в процессе фотолиза PbN₆(Ам) микрогетерогенных систем PbN₆(Ам) – Pb, темновые и фотопроцессы на границе раздела которых, по-видимому, обеспечивают увеличение V_{Φ} и i_{Φ} в собственной области поглощения азида свинца (рис. 2, 3), а также появление новых длинноволновых областей фоточувствительности (рис. 3).

Фотохимические проявления фотоэлектрических процессов в таких системах могут быть вызваны перераспределением под действием контактного поля генерированных светом носителей заряда [6–9, 15–18]. Эти процессы приведут к существенным изменениям условий протекания фотолиза у предварительно фоторазложенных препаратов азида свинца по сравнению с фотораспадом свежеприготовленных. На рис. 5 приведена диаграмма энергетических зон контакта PbN₆(Am) – Pb, при построении которой использованы результаты измерений КРП, ВАХ, данные по спектральному распределению U_{ϕ} , V_{ϕ} и i_{ϕ} , а также результаты измерений внешнего фотоэффекта [20].

Рис. 5. Диаграмма энергетических зон гетеросистемы PbN₆(Am) — Pb

При воздействии света из области собственного поглощения азида свинца имеет место интенсивная генерация электрон-дырочных пар в азиде свинца (рис. 5, переход 1)

$$N_3^- \rightarrow N_3^0 + e.$$

Так как квантовый выход фотолиза, оцененный по начальному участку кинетической кривой V_{ϕ} , составляет 0,002...0,01, то часть фотоиндуцируемых носителей заряда рекомбинирует (рис. 5, переходы 3)

$$T^{+} + e \rightarrow T^{0} + p \rightarrow T^{+}$$

где T⁺ – центр рекомбинации, а также перераспределяются в контактном поле с переходом неравновесных дырок из валентной зоны азида свинца в свинец

$$Pb_n^- + p \rightarrow Pb_n^0$$
.

При этом формируется U_{Φ} отрицательного знака со стороны азида свинца (рис. 3), которая может способствовать дальнейшему увеличению размеров частиц

 $Pb_{n}^{0}+V_{a}[Pb_{n}^{0}V_{a}]+e \rightarrow [Pb_{n}^{0}V_{a}e]+V_{a} \rightarrow [Pb_{n}^{0}2V_{a}e]+e \rightarrow Pb_{n+1}^{0}$, где V_{a} – анионная вакансия (азид свинца разупорядочен по Шоттки [21]).

Кроме того, согласно диаграмме энергетических зон (рис. 5) электроны будут выталкиваться полем КРП за пределы области пространственного заряда азида свинца, где могут принимать участие в образовании, росте и дальнейшем размножении частиц свинца. Формирование частиц фотолитического свинца, по нашему мнению [15, 17, 18], происходит с участием собственных поверхностных состояний (T_{II} [18, 19])

СПИСОК ЛИТЕРАТУРЫ

- 1. Янг Д. Кинетика разложения твердых веществ. М.: Мир, 1969. 263 с.
- Evans B.L., Yoffe A.D. Structure and stability of inorganic azides. II. Some physical and optical properties and the fast decomposition of solid monovalent inorganic azides // Proc. Roy. Soc. – 1959. – V. A250. – P. 364–366.

 $T_{\Pi}+V_{a}\rightarrow [T_{\Pi}V_{a}]+e\rightarrow [T_{\Pi}V_{a}e]+V_{a}\rightarrow [T_{\Pi}2V_{a}e]+e\rightarrow T_{\Pi}Pb^{0}.$

По мере увеличения размера и числа частиц фотолитического свинца будет возрастать число дырок в области пространственного заряда азида свинца. Результирующее увеличение концентрации дырок приведет к возрастанию i_{Φ} , а также V_{Φ} по принимаемым для фотолиза азида свинца реакциям – участок III (рис. 2)

$$p + V_{\kappa}^{-} \rightarrow V_{\kappa}^{0} + p \rightarrow V_{\kappa}^{+} \rightarrow 3N_{2} + 2V_{a}^{+} + V_{\kappa}^{-},$$

где $V_a^{\,+}$ и $V_{\kappa}^{\,-}$ – анионная и катионная вакансии соответственно.

При воздействии на гетеросистемы PbN₆(Am) – Pb света из длинноволновой области спектра имеет место фотоэмиссия электронов из свинца в зону проводимости азида свинца (рис. 5, переход 2), что приводит к появлению U_{Φ} , V_{Φ} и i_{Φ} у предварительно фоторазложенных препаратов в длинноволновой области спектра. Обнаруженные закономерности изменения фотолитическим свинцом фоточувствительности азида свинца в длинноволновой области спектра согласуются с изложенным. Действительно, формируется U_{Φ} отрицательного знака со стороны азида свинца (рис. 3), энергетическое положение длинноволнового порога U_{Φ}, V_{Φ} и i_{Φ} для гетеросистем PbN₆(Ам) – Pb удовлетворительно совпадает с величиной энергетического барьера для перехода электронов из металла в зону проводимости азида свинца (рис. 5, переход 2), а энергия активации фотолиза гетеросистем $PbN_6(Am) - Pb (E_a \approx 1,2 \Rightarrow B)$ отличается от энергии активации фотолиза PbN₆(Ам) $(E_a ≈ 0, 48)$ на величину энергетического порога для перехода электрона из валентной зоны в металл (*E*_а≈0,65 эВ) (рис. 5, переход 4).

Для определения лимитирующей стадии процесса роста частиц фотолитического свинца оценили время, в течение которого подвижная анионная вакансия нейтрализует электрон или диффундирует к нейтральному центру.

Время релаксации при диффузионном протекании процесса может быть оценено как [22]

$$\tau_{\rm I} = e^2 / \sigma k_b a T$$

где e – заряд электрона; a – постоянная решетки ($a_{\text{PbN}_{6}} = 8 \cdot 10^{-10} \text{ см}$); T = 293 K, k_{b} – постоянная Больцмана. При T = 293 K $\tau_{\pi} = 80 \text{ с}$. Константа скорости фотолиза (k^{II}) при этом составляет $k^{\text{II}} \approx 1,25 \cdot 10^{-2} \text{ c}^{-1}$.

Удовлетворительное совпадение констант скорости фотолиза (табл. 2) с k^{II} дает основание полагать, что лимитирующей стадией процесса фотолиза PbN₆(Ам) является диффузия анионных вакансий к нейтральному центру.

- Deb S.K. Optical absorption spectra of azides // Trans. Farad. Soc. - 1969. -V. 65. -P. 3187-3194.
- Verneker V.R.P. Photodecomposition of Solid Metal Azides // J. Phys. Chem. – 1968. – V. 72. – № 5. – P. 1733–1736.
- Савельев Г.Г., Гаврищенко Ю.В., Захаров Ю.А. Фото-ЭДС в азидах свинца и серебра // Известия вузов. Физика. – 1968. – – № 7. – С. 2–4.

- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Катализ фоторазложения азида серебра продуктами реакции // Химическая физика. – 1999. – Т. 18. – № 2. – С. 44–46.
- Суровой Э.П., Захаров Ю.А., Бугерко Л.Н, Шурыгина Л.И. Автокатализ фотолиза азида таллия // Химия высоких энергий. – 1999. – Т. 33. – № 5. – С. 387–390.
- Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. Закономерности формирования микрогетерогенных систем при фотолизе азида таллия // Химическая физика. –2003. – Т. 22. – № 9. – С. 24–28.
- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Закономерности образования твердофазного продукта фотолиза азида серебра // Химическая физика. – 2000. – Т. 19. – № 10. – С. 68–71.
- Власов А.П., Суровой Э.П. Фотоэлектрическая чувствительность гетеросистем азид таллия алюминий в поле излучения // Журнал физической химии. – 1991. – Т. 65. – № 6. – С. 1465–1469.
- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Кинетика фотолиза гетеросистем азида серебра с теллуридом кадмия и оксидом меди // Журнал физической химии. – 2000. – Т. 74. – № 5. – С. 927–933.
- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Фотолиз гетеросистем AgN₃ металл // Химическая физика. 2000. Т. 19. № 8. С. 22–25.
- Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. Фотолиз гетеросистем азид таллия – металл // Химическая физика. – 2001. – Т. 20. – № 12. – С. 15–22.
- Суровой Э.П., Бугерко Л.Н. Термостимулированное газовыделение из систем азид серебра металл // Химическая физика. – 2002. – Т. 21.– № 7. – С. 74–78.

- Суровой Э.П., Бугерко Л.Н., Захаров Ю.А., Расматова С.В. Закономерности формирования твердофазного продукта фотолиза гетеросистем азид свинца – металл // Материаловедение. - 2002. – № 9. – С. 27–33.
- Суровой Э.П., Сирик С.М., Захаров Ю.А., Бугерко Л.Н. Фотолиз гетеросистем азид серебра – оксид меди (1) // Журн. науч. и прикл. фотографии. – 2002. – Т. 47. – № 5. – С. 19–27.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Исследование закономерностей формирования продуктов фотолиза гетеросистем азид свинца — оксид меди (1) // Материаловедение. — 2003. — № 7. — С. 18—24.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз систем "азид свинца – теллурид кадмия" // Известия Томского политехнического университета. – 2004. – Т. 307. – № 4. – С. 85–88.
- Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. Определение работы выхода электрона из азидов свинца серебра и таллия // Неорганические материалы. 1996. Т. 32. № 2. С. 162–164.
- Колесников Л.В. Спектры энергетических состояний и некоторые особенности реакций разложения азидов тяжелых металлов: Автореф. дис. ... канд. хим. наук. Минск, БГУ, 1978. 21 с.
- Захаров Ю.А., Савельев Г.Г., Шечков Г.Т. Влияние добавок Cu²⁺ и Ag⁺ на термическое разложение, электропроводность и фотопроводимость азида свинца // Известия вузов. Химия и хим. технология. – 1967. – Т. 1. – № 11. – С. 1191–1194.
- Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. — М.: Наука, 1972. — 399 с.

УДК 541.124-13:533.9

КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ ПРИ ЭЛЕКТРИЧЕСКОМ ВЗРЫВЕ МЕТАЛЛОВ В АКТИВНЫХ ГАЗАХ

Г.Г. Савельев, В.В. Шаманский*, М.И. Лернер**

Томский политехнический университет *НИИ высоких напряжений. г. Томск E-mail: jahivolt@mail.tomsknet.ru **Институт физики прочности и материаловедения СО РАН. г. Томск

На основе экспериментально определенной зависимости выхода реакции от исходной концентрации активного газа и зависимости скорости расширения паро-капельного облака предложен подход к анализу кинетики химических реакций при электрическом взрыве проводника Al в активных газах.

Введение

Электрический взрыв металлической проволочки (ЭВП) используется для получения как высокодисперсных металлов, так и их соединений с химически активными газами (О₂, N₂, NH₃, углеводороды и др.) [1–4]. Несмотря на стехиометрически достаточные количества этих газов в электровзрывной камере, химические соединения зачастую образуются в виде композита химическое соединение/металл или даже примесей к металлу. Состав композита зависит от свойств реагентов и условий эксперимента – введенной энергии, концентрации реагентов, давления в системе. Так как состав композита важен для формирования свойств материалов, создаваемых на основе получаемых этим способом нанопорошков, то определение причин и условий образования тех или иных составов и чистых веществ является актуальной задачей.

Специфика реакций, происходящих при ЭВП, состоит в том, что они начинаются при очень высокой начальной температуре ($\sim 10^4$ K) и происходят при ее быстром снижении ($\sim 10^8$ K/c), то есть система первоначально находится в состоянии "холодной" плазмы (ионизация газа ~ 1 %) с последующей эволюцией к обычным условиям.