(II), 3319 см^{-1} (III), $3370 \text{ и } 3180 \text{ см}^{-1}$ (IV), то есть наблюдается некоторое смещение полос поглощения в низкочастотную область для соединений I-III, в высокочастотную – для IV. Значения δ(NH₂) в комплексах смещаются в высокочастотную область до 1623 см-1 в соединениях І-III, до 1634 см⁻¹ в комплексе IV по сравнению с δ (NH₂)=1617 см⁻¹ в NA. Частота ν (CO)_{NA}=1679 см-1 незначительно смещается в низкочастотную область до 1667, 1673, 1673 см⁻¹ в соединениях I-III, соответственно, а в комплексе IV (1684 см-1) наблюдается ее повышение, что может свидетельствовать об отсутствии связи атома кислорода амидной группы с атомом меди. Приведенные данные, в целом, свидетельствуют, скорее, о неучастии амидной группировки в координации и отличии строения комплекса IV от других соединений. Возможно, молекула никотинамида координирована с ионами-комплексообразователями через атом азота пиридинового кольца, так как наблюдается смещение полос поглощения укольца в интервале 1600–1030 см-1

	Co	SiF6
Найдено, %	10,62	25,60
Для [Co(NA)2(H2O)4]SiF6 • 2H2O		
Вычислено, %	10,65	25,68
	Ni	SiF6
Найдено, %	10,58	25,60
Для [Ni(NA)2(H2O)4]SiF6 • 2H2O		
Вычислено, %	10,62	25,69
	Zn	SiF6
Найдено, %	11,62	25,33
Для [Zn(NA)2(H2O)4]SiF6 • 2H2O		
Вычислено, %	11,68	25,38
	Cu	SiF6
Найдено, %	12,12	27,14
Для [Cu(NA)2(SiF6)(H2O)2] • 2H2O		
Вычислено, %	12,17	27,22

в высокочастотную область по сравнению со спектром лиганда.

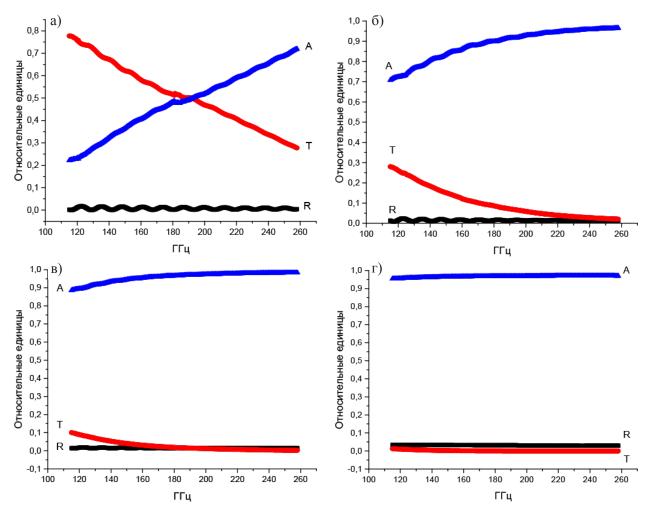
Список литературы

- 1. Т.В. Кокшарова, И.С. Гриценко, С.В. Курандо, Т.В. Мандзий // Вісник ОНУ, 2009.— Т.14.— №12.— С.91.
- 2. Vaskova Z., Kitanovski N., Jaglicic Z. et al. // Polyhedron, 2014.– Vol.81.– P.555.
- 3. Smith N.A., Zhang P., Salassa L. et al // Inorg. Chim. Acta, 2017. Vol. 454. P. 240.
- 4. Ozbek F.E., Sertcelik M., Yuksek M. et al // J. Mol. Struct., 2017. Vol.1150. P.112.

ИССЛЕДОВАНИЕ РАДИОПОГЛОЩАЮЩИХ СВОЙСТВ КОМПОЗИЦИОННОГО МАТЕРИАЛА В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ ЧАСТОТ

В.И. Семенова

Научный руководитель – д.т.н., профессор О.В.Казьмина


Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, stebeneva_valeriya@mail.ru

Исследование радиоизлучения терогерцового диапазона (Т-лучи) является перспективным направлением. Благодаря особенностям данной спектральной области электромагнитные волны обладают высокой проникающей способностью. На сегодняшний день известен ряд областей применения Т-лучей, таких как медицина, системы безопасности, экология [1]. При работе с данным видом электромагнитного излучения необходимы материалы, способные препятствовать неконтролируемому распространению волн, что указывает на актуальность разработки радиопоглотителей терогерцового диапазона.

Ранее установлено, что соединения карбида кремния и арсенида галлия эффективно поглощают электромагнитное излучение в диапазоне низких Т-лучей от 20–40 ГГц [2]. С целью увеличения широкополостности радиопоглотителя и повышения его эффективности в диапазоне до 260 ГГц скорректирован состав и синтезирован новый материал. В качестве компонента рассмотрен отход полупроводникового производства, содержание которого изменяли от 10 до 30 масс. %. Основные физико-механические характеристики образцов размером 10×10 мм приведены в таблице 1. Основные электрофизические

Таблица 1. Физико-механические х	карактеристики	образцов
----------------------------------	----------------	----------

Основные компо- ненты материала	Содержание в материале отхода, масс. %	Кажущаяся плот- ность, кг/м 3	Прочность на сжа- тие, МПа
вспученный перлит, жидкое стекло, отход	_	330	0,3
	10	350	1,5
	20	510	4,7
	30	560	6,0

Рис. 1. Параметры электромагнитного отклика композита, содержащего отход, в диапазоне частот от $120-260\ \Gamma\Gamma \mu$: а) 0%; б) 10%; в) 20%; г) 30%. Коэффициенты, отн. ед.: T – прохождения; R – отражения; A – поглощения

характеристики определены с применением радиоспектроскопа типа E8363B в диапазоне частот 120–260 ГГц на базе Центра радиофизических измерений ТГУ (г. Томск)

Результаты измерения электромагнитных свойств представлены на рисунке 1. Для образца с содержанием 30% отхода, по сравнению с образцом без отхода, коэффициент поглощения увеличивается в 4,4 раза на частоте 120 ГГц и в 1,4 раза на частоте 260 ГГц. Коэффициент прохождения при этом закономерно снижается до

минимального значения (в 27 раз на 120 ГГц и в 10 раз на частоте 40 ГГц).

Таким образом, установлено, что полученный композиционный материал эффективно поглощает в терагерцовом диапазоне частот, причем наибольшие значения коэффициентов поглощения имеют образцы с содержанием отхода 20–30 % масс. Следовательно, данный композит может быть рассмотрен как радиопоглощающий материал.

Список литературы

- 1. Гибин И.С., Котляр П.Е. // Успехи прикладной физики, 2018. Т.6. №2. С.117—128.
- 2. Стебенева В.И., Казьмина О.В. // Актуальные вопросы химической технологии и защи-

ты окружающей среды: сб.материалов VII Всерос. конф. с междунар.участием, 2018.— C.78.

СТРУКТУРНЫЕ И ОПТИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ НИОБАТА ЛИТИЯ, ВЫРАЩЕННЫХ ИЗ ШИХТЫ ЛЕГИРОВАННОЙ БОРОМ

Н.В. Сидоров, Р.А. Титов Научный руководитель – д.ф.-м.н., г.н.с., профессор Н.В. Сидоров

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева ФИЦ КНЦ РАН

184209, Россия, г. Апатиты, Мурманской обл., ул. Академгородок 26a, romantitrov@mail.ru

Уникальные физические характеристики нелинейно-оптического монокристалла ниобата лития (LiNbO₃) обусловливают его широкое применение в качестве функционального материала в различных устройствах электронной техники. С целью повышения стойкости к повреждению оптическим излучением и снижения концентрации основных структурных дефектов (NbLi) путём направленного структурирования расплава конгруэнтного состава неметаллическим элементом бором нами были получены номинально чистые кристаллы LiNbO₃: $B(cogepwahue fopa B kpuctanne \sim 10^{-4} \, bec. \%)$.

Кристаллы выращивались в воздушной атмосфере методом Чохральского на установке «Кристалл-2». Номинально чистые кристаллы LiNbO $_{3 \text{конг}}$ и LiNbO $_{3 \text{стех}}$ были выращены из расплавов конгруэнтного состава и с содержанием Li $_2$ O равным 58,6 мол%, соответственно. Содержание следовых количеств примесей в кристаллах не превышало 0,5–1,0 • 10⁻⁴ мас.%. Легирование шихты бором выполнено методом прямого твердофазного легирования, который заключается в твердофазном синтезе смеси Li $_2$ CO $_3$, Nb $_2$ O $_5$ и H $_3$ BO $_3$ с последующим получением гранулированной шихты LiNbO $_3$: В.

Показано, что кристаллы $LiNbO_3$: В (0,55) и 0,83 мол. % B_2O_3 в шихте) характеризуются такой же высокой композиционной однородностью, как и номинально чистые конгруэнтные кристаллы $(LiNbO_{3_{KOHT}})$, но отличаются от конгруэнтных кристаллов существенно меньшим количеством дефектов NbLi, являющихся наиболее глубокими электронными ловушками. Кроме

глубоких ловушек электронов, создаваемых точечными фоторефрактивными центрами (NbLi), в кристалле LiNbO₃ существует множество мелких ловушек электронов, влияющих на эффект фоторефракции и особенности спекл-картин фотоиндуцированного рассеяния света ФИРС [4].

По параметрам индикатрисы ФИРС, используя подходы, предложенные в работах [2, 3], в исследованных кристаллах были определены значения напряженностей диффузионного (Ер) и фотовольтаического (Еру) электрических полей. Преимущественным механизмом фоторефракции в кристалле LiNbO₃ является фотовольтаический механизм, т.е. значение величины фотовольтаического поля $(E_{\rm pv})$ больше значения величины диффузионного поля (E_D) [4]. Для кристаллов LiNbO₃, выращенных из шихты с содержанием бора 0,55 и 0,83 мол. % B₂O₃, значение E_{pv} близки: 5458 и 5554 V/cm, соответственно. При этом значение диффузионного поля для кристалла $LiNbO_3$: В (0,55 мол. % B_2O_3 в шихте) немного выше значения E_D для LiNbO₃: В (0,83 мол. % ${\rm B_2O_3}$ в шихте) и LiNbO $_{\rm 3 KOHT}$ (572, 25 и 52 V/cm, соответственно), что указывает на большее количество мелких ловушек электронов в первом кристалле. Для кристалла $LiNbO_{3crex}$ значения E_{py} и E_{D} равны 4055 и 1749 V/cm, соответственно. Это свидетельствует о росте концентрации мелких электронных ловушек в LiNbO_{зстех} (проявляется диффузионный механизм фоторефракции), по сравнению с остальными кристаллами. Показано, что величина диффузионного поля, отвечающего за диффузионный механизм переноса заряда в кристаллах LiNbO₃:В имеет