галктуроновой кислоте.

Разработанная методика валидированна по следующим параметрам: линейность, правильность, прецизионность в условиях повторяемости и воспроизводимости.

Список литературы

- 1. Popov S.V., Ovodova R.G., Golovchenko V.V., Khramova D.S., Markov P.A., Smirnov V.V. // Food Chemistry, 2014. - №143. - P.106–113.
- 2. Kinzo N. Yasuo T. Yuko I. Noriko T. // Carbohydrate Research, 1971. – Vol. 18.I. 1. – P.95–102.
- 3. Bailey R.W. // Biochem J., 1958.- Vol.68.4.-P.669-672.
- 4. Sondergaard G. // Scand J Clin Lab Invest., 1958. - Vol. 10. I. 2. - P. 203 - 210.

ПОЛИСАХАРИДЫ КАЛУСНЫХ КУЛЬТУР ВАСИЛЬКА ШЕРОХОВАТОГО

К.И. Ровкина¹, А.Н. Савельева²

¹Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, rki91@bk.ru

> ²Сибирский государственный медицинский университет 634050, Россия, г. Томск, Московский тракт 2 стр.18

Введение. Влияние антропогенных факторов на окружающую среду сокращает численность и разнообразие растений, в том числе и лекарственных. Но благодаря культивированию клеток in vitro эта проблема частично решается. Каллусные культуры используются как вторичный источник сырья, но зачастую в них снижено количество соединений, синтезируемых клетками растения. Группой ученых ТГУ и СибГМУ проводится комплексное изучение василька шероховатого как перспективного источника биологически активных веществ. Ряд работ посвящены исследованию гепатопротекторной активности полисахаридов (ПС) и экстрактов василька шероховатого [1–2]. Таким образом, поиск альтернативных источников биологически активных веществ, в том числе ПС является актуальной задачей в рамках комплексного исследования.

Цель. Изучить химический состав водорастворимых пектиновых полисахаридов (ВРПС) и пектиновых полисахаридов (ПП) протопектинового комплекса каллусных культур василька шероховатого полученных из различных тканей.

Методика эксперимента. Объектами исследования являлись каллусные культуры василька шероховатого полученных из тканей «настоящего» листа (КЛ1СS) и тканей семядольного листа (КЛ2CS). Каллусная культура василька шероховатого получена на кафедре Физиологии растений и биотехнологии биологического института НИ ТГУ, предоставлена Филоновой Марией Васильевной - аспирант, ассистент кафедры. Каллусы депигментировались горячим этилацетатом. Для выделения водорастворимых полисахаридов (ВРПС) использовали метод экстракции водой при нагревании (60°C) в течение 2 часов. Далее шрот экстрагировали подкисленной водой (HCl) при температуре 80°С в течение 2 часов для получения кислых ПС (КПС). Пектины получали путем экстракции шрота раствором 0,5% NH₄C₂O₄ (80°C, 2 часа). ПС осаждали этанолом, растворяли в Н,О, диализировали в течение 2 дней. Выход ПС определяли гравиметрически. Мономерный состав ПС изучали методом газо-жидкостной хроматографии после кислотного гидролиза трифторуксусной кислотой, с последующим ацетилированием полиолов. Содержание уроновых кислот (УК) определяли спектрофотометрически по реакции с 3,5-диметилфенолом, содержание белка методом Лоури. Молекулярно-массовое распределение изучали методом эксклюзионной ВЭЖХ.

Результаты. Выход ВРПС из КЛ1СS практически соответствует выходу ВРПС из надземной части василька шероховатого, выход из КЛ2CS незначительно ниже. Выход ПП из КЛ1СS выше, чем из растительного сырья, а из КЛ2CS - ниже. По содержанию УК ВРПС и КПС каллусов различаются не значительно $(\sim 5 \%)$, а разница в содержании УК для ПП достигает ~15 %. Также значительно различаются молекулярные массы всех полученных фракций ПС, что косвенно может свидетельствовать о

Таблица 1.

		Выход (%)	УК (%)	Белок (%)	Mw, кДа
ВРПС	КЛ1CS	2,6	13,5	6,3	111,0
	КЛ2CS	2,1	8,5	5	176,2
КПС	КЛ1CS	1,3	45	7,7	62,8
	КЛ2CS	3,3	40	8	143,4
ПП	КЛ1CS	9,6	84	5,3	211,7
		5,7	99,7	4,2	56,9

различной биологической активности.

Вывод. Представленные на анализ каллусы василька шероховатого по выходу ПС соответствуют надземной части василька шероховатого. Однако отличаются по химическому составу. Использование каллусных культур василька ше-

роховатого на основе проведенного исследования целесообразно для получения биологически активных веществ (полисахаридов), которые обладают потенциалом для дальнейшего детального изучения химического состава и фармакологической активности.

Список литературы

1. Ларькина М.С., Сапрыкина Э.В., Геренг Е.А., Кадырова Т.В., Ермилова Е.В., Пешкина Р.А. // Вопросы биологической, медицинской и фармацевтической химии, 2011.— №7.— C.28-33.

2. J. Chen, D. Mao, Y. Yong, J. Li, H. Wei, L. Lu // Food Chem., 2012. N≥130. – P.687–694.

ПРОДУКЦИЯ ФЕНАЗИНОВЫХ СОЕДИНЕНИЙ БАКТЕРИЕЙ Pseudomonas fluorescens НА ПИТАТЕЛЬНЫХ СРЕДАХ РАЗНОГО СОСТАВА

А.С. Сапожникова

Научный руководитель - к.мед.н., доцент М.В. Чубик

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, ass108@tpu.ru

Введение

Для обеспечения высокого качества и продолжительных сроков хранения продуктов сельского хозяйства необходимо постоянно совершенствовать сорта и гибриды сельскохозяйственных культур, а также улучшать средства защиты растений от болезней и вредителей. Благодаря своим фунгицидным свойствам и низкой токсичности, исследуемые нами феназиновые соединения широко применяются в сельском хозяйстве в качестве антибиотиков.

Целью данной работы является выделение феназиновых соединений, полученных от бактерии *Pseudomonas fluorescens* на питательных средах разного состава, а также сравнение результатов.

Теоретическая часть

 $Ps.\ fluorescens$ — грамотрицательные бактерии в виде мелких палочек (1–2×6 мкм), подвижные, имеют 2–4 полярных жгутика. Культуры бактерий образуют зеленовато-желтый флуоресцирующий пигмент. Колонии бесцветные или белые. Часто встречаются в воде, почве, на разных растительных и животных субстратах; не патогенны для животных [1].

Феназины представляют собой группу азотсодержащих гетероциклических соединений, известных своими антибактериальными, противогрибковыми и противоопухолевыми функциями [2]. Молекула всех феназиновых соединений состоит из трёх ароматических колец.