полную способность реакционной ректификации [2] и соблюдающие условные требования.

2. Оптимальное проектирование систем РР для синтеза ЭТБЭ

Этил трет-бутилового эфир (ЭТБЭ) получают реакцией между изобутиленом (ИБ) и этанолом. Реакция и ее кинетика обсуждены в [3]. Технологическая схема процесса приведена на рисунке 1.

Оптимальное проектирование заключается в решении проблемы типа Совмещенной Целочисленной — Нелинейной Программы. Формулировка задачи оптимизации приведена в уравнении (1).

 $C_{\text{кап}}$ и $C_{\text{оп}}$ рассчитаны корреляциями по [4]; ограничения F(X) рассчитаны математической модели процесса синтеза, выполненной в среде

Aspen Plus (технологическая схема на рис. 2); ограничения G(X) приведены в [5]; требования Q(X) и пределы lb, ub заданы произвольно.

Для решения проблемы (1) был использован метод нелинейной оптимизации с прямым поиском MADS, который доступен как плагин для Microsoft Excel NOMAD [6]. Связь между Excel и Aspen выполнена собственным интерфейсом ActiveX на Visual Basic.

3. Результаты и выводы

Проведенная оптимизация успешно определяет конструктивные и оперативные параметры реакционно-ректификационной колонны. Значения переменных проектирования и составленная схема решения проблемы оптимизации приведены на рисунке 2.

Список литературы

- 1. Amte V. et al. // Comput. Chem. Eng., 2013.— Vol.48.— P.209–217.
- 2. Frey T. et al. // Comput. Aided Chem. Eng., 2000.– Vol.8.– P.115–120.
- 3. Sneesby M.G. // Ind. Eng. Chem. Res., 1997.— Vol.36.—№5.— P.1855—1869.
- 4. Turton R. Analysis, Synthesis, and Design of
- Chemical Processes. Michigan: Prentice Hall, 2012
- 5. Gómez J. M. et al. // Ind. Eng. Chem. Res., 2006.– Vol.45.– №4.– P.1373–1388.
- 6. Audet C. // SIAM J. Optim., 2006.– Vol.17.– №1.– P.188–217.

МОДЕЛЬ ПРОЦЕССА СЕРНОКИСЛОТНОГО АЛКИЛИРОВАНИЯ ИЗОБУТАНА БУТАН-БУТИЛЕНОВОЙ ФРАКЦИЕЙ

Т.А. Гиль

Научный руководитель - к.т.н., доцент И.М. Долганов

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, gilj_tanya@mail.ru

В настоящее время в нефтеперерабатывающей промышленности образуется большое количество газообразных олефинов, которые можно использовать в качестве сырья для процесса сернокислотного алкилирования изобутана бутан-бутиленовой фракцией, как наиболее распространенного вида алкилирования в России, с целью получения высокооктанового компонента – алкилата [1]. Следовательно, необходимо совершенствование данного процесса.

Наиболее оптимальным способом совершенствования процесса алкилирования является создание нестационарной математической модели. Для ее создания необходимо знать зависимости термодинамических и кинетических параметров от регулируемых (давление, температура) для того, чтобы оптимизировать модель и убрать факторы, которые не влияют на результаты расчета [2].

Разработку математической модели начинаем с расчетов термодинамических параметров и их оценки. Анализ проводился в программном пакете Gaussian, была применена процедура ВЗLYР 3-21, метод DFT. Результаты оценки термодинамических параметров представлены в таблице 1.

Основными компонентами процесса алкилирования изобутана бутан-бутиленовой фрактирования

Таблица 1. Значения термодинамических параметров основных реакций в процессе алкилирования изобутана бутан-бутиленовой фракцией (при 274 К, 4,1 атм.)

Реакция	ΔΗ, кДж/моль	ΔS , Дж/(моль • К)	ΔG , кДж/моль
изобутан + изобутилен = 2,2,4-триметилпентан	-54,11	-171,95	-7,00
изобутан + бутилен-1 = 2,2,4-триметилпентан	-71,71	-173,65	-24,13
изобутан+бутилен-2=2,2,4-триметилпентан	-58,27	-168,61	-12,07
изобутан + бутилен-1 = 2,2,3-триметилпентан	-60,58	-169,18	-14,22
изобутан + бутилен-2=2,2,3-триметилпентан	-43,14	-154,13	-0,91
изобутан + бутилен-1 = 2,3,4-триметилпентан	-54,73	-163,43	-9,95
изобутан+бутилен-2=2,3,4-триметилпентан	-43,29	-155,39	-0,71
изобутан + бутилен-2 = 2,3,3-триметилпентан	-55,73	-168,79	-9,48
изобутан + бутилен-1 = 2,3-диметилгексан	-67,28	-155,60	-24,65
изобутан+бутилен-2=2,3-диметилгексан	-54,83	-150,56	-13,58
изобутан + бутилен-1 = 2,4-диметилгексан	-71,99	-158,88	-28,46
изобутан + бутилен-2=2,4-диметилгексан	-59,55	-153,84	-17,40
изобутан + бутилен-1 = 2,5-диметилгексан	-75,05	-157,26	-31,96
изобутан+бутилен-2=2,5-диметилгексан	-63,61	-152,22	-21,90
изобутан+пропилен=2,4-диметилпентан	-70,26	-148,17	-29,66
изобутан + пропилен = 2,4-диметилпентан	-80,25	-151,75	-38,67

цией является триметилпентаны и диметилгексаны, так как их октановые числа близятся к 100. Из таблицы видно, что образование диметилпентанов (ΔG_{cp} =-34,2 кДж/моль) термодинамически более выгодно, чем образование основных компонентов (ΔG_{cp} =-15,5 кДж/моль). Соответственно, можно сделать вывод о том,

что понижение температуры может привести к термодинамическому запрету целевых реакций раньше, чем побочных реакций.

Следующим шагом в создании математической модели будет расчет кинетических параметров, влияющих на селективность процесса сернокислотного алкилирования.

Список литературы

- 1. Ахметов С.А. Технологи глубокой переработки нефти и газа.— Уфа: Гилем, 2002.— 672c.
- 2. Гартман Т.Н., Клушин Д.В. Основы компью-

терного моделирования химико-технологических процессов.— М.: ИКЦ «Акадекнига», 2008.— 415с.

КАТАЛИТИЧЕСКИЕ СВОЙСТВА ЦЕОЛИТА, МОДИФИЦИРОВАННОГО ГЕТЕРОПОЛИСОЕДИНЕНИЯМИ СОСТАВА Со-Мо-Ві

С.Н. Джалилова

Научный руководитель – д.т.н., профессор В.И. Ерофеев

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, dzhalilovasn@mail.ru

В последние годы при освоении нефтяных и газовых месторождений возникла острая необходимость в утилизации и комплексной переработке легкого углеводородного сырья: газовых конденсатов и попутных нефтяных газов (ПНГ) в различные ценные продукты. Одним из

перспективных направлений переработки пропан-бутановой фракции (ПБФ) ПНГ может быть конверсия ПБФ в низшие олефины, арены на цеолитсодержащих катализаторах.

Целью настоящей работы являлось исследование процесса превращения пропан-бутановой