Таблица 1. Значения термодинамических параметров основных реакций в процессе алкилирования изобутана бутан-бутиленовой фракцией (при 274 К, 4,1 атм.)

Реакция	ΔΗ, кДж/моль	ΔS , Дж/(моль • К)	ΔG , кДж/моль
изобутан + изобутилен = 2,2,4-триметилпентан	-54,11	-171,95	-7,00
изобутан + бутилен-1 = 2,2,4-триметилпентан	-71,71	-173,65	-24,13
изобутан+бутилен-2=2,2,4-триметилпентан	-58,27	-168,61	-12,07
изобутан + бутилен-1 = 2,2,3-триметилпентан	-60,58	-169,18	-14,22
изобутан + бутилен-2=2,2,3-триметилпентан	-43,14	-154,13	-0,91
изобутан + бутилен-1 = 2,3,4-триметилпентан	-54,73	-163,43	-9,95
изобутан+бутилен-2=2,3,4-триметилпентан	-43,29	-155,39	-0,71
изобутан + бутилен-2 = 2,3,3-триметилпентан	-55,73	-168,79	-9,48
изобутан + бутилен-1 = 2,3-диметилгексан	-67,28	-155,60	-24,65
изобутан+бутилен-2=2,3-диметилгексан	-54,83	-150,56	-13,58
изобутан + бутилен-1 = 2,4-диметилгексан	-71,99	-158,88	-28,46
изобутан + бутилен-2=2,4-диметилгексан	-59,55	-153,84	-17,40
изобутан + бутилен-1 = 2,5-диметилгексан	-75,05	-157,26	-31,96
изобутан+бутилен-2=2,5-диметилгексан	-63,61	-152,22	-21,90
изобутан+пропилен=2,4-диметилпентан	-70,26	-148,17	-29,66
изобутан + пропилен = 2,4-диметилпентан	-80,25	-151,75	-38,67

цией является триметилпентаны и диметилгексаны, так как их октановые числа близятся к 100. Из таблицы видно, что образование диметилпентанов (ΔG_{cp} =-34,2 кДж/моль) термодинамически более выгодно, чем образование основных компонентов (ΔG_{cp} =-15,5 кДж/моль). Соответственно, можно сделать вывод о том,

что понижение температуры может привести к термодинамическому запрету целевых реакций раньше, чем побочных реакций.

Следующим шагом в создании математической модели будет расчет кинетических параметров, влияющих на селективность процесса сернокислотного алкилирования.

Список литературы

- 1. Ахметов С.А. Технологи глубокой переработки нефти и газа.— Уфа: Гилем, 2002.— 672c.
- 2. Гартман Т.Н., Клушин Д.В. Основы компью-

терного моделирования химико-технологических процессов.— М.: ИКЦ «Акадекнига», 2008.— 415с.

КАТАЛИТИЧЕСКИЕ СВОЙСТВА ЦЕОЛИТА, МОДИФИЦИРОВАННОГО ГЕТЕРОПОЛИСОЕДИНЕНИЯМИ СОСТАВА Со-Мо-Ві

С.Н. Джалилова

Научный руководитель – д.т.н., профессор В.И. Ерофеев

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, dzhalilovasn@mail.ru

В последние годы при освоении нефтяных и газовых месторождений возникла острая необходимость в утилизации и комплексной переработке легкого углеводородного сырья: газовых конденсатов и попутных нефтяных газов (ПНГ) в различные ценные продукты. Одним из

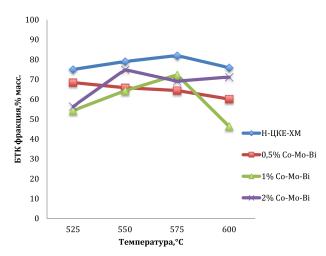
перспективных направлений переработки пропан-бутановой фракции (ПБФ) ПНГ может быть конверсия ПБФ в низшие олефины, арены на цеолитсодержащих катализаторах.

Целью настоящей работы являлось исследование процесса превращения пропан-бутановой

фракции на цеолитсодержащих катализаторах в высокооктановые бензины, модифицированных гетерополисодержащими соединениями.

Цеолиты типа MFI синтезировали из щелочных алюмокремнегелей при температуре 170–175°С в течение 4 суток с использованием органической структурообразующей добавки «Х-масла», побочный продукт производства капролактама [1].

Конверсию ПБФ состава: метан -0.3; этан -3.0; пропан -80.9; бутаны -15.8 мас. % проводили на модифицированных цеолитных катализаторах по методике, описанной в [2].


В работе проводились исследования каталитической активности промышленного цеолитсодержащего катализатора Н-ЦКЕ-ХМ, модифицированного гетерополисодержащими соединениями.

На рисунке 1 предложен график выхода ароматических соединений от температуры процесса конверсии.

Таким образом, увеличение выхода жидкой фазы, видим на катализаторе H-ЦКЕ-XM равное

Список литературы

- 1. Ерофеев В.И., Коваль Л.М. Пат. России №2313487, 2007. Опубл.: 27.12.2007. Бюл. №36.
- 2. Trofimova A.S., Koval L.M., Erofeev V.I. Syn-

Puc. 1. Влияние температуры процесса на выход жидкой фазы на катализаторе H-Ц-KE-XM, модифицированном ГПС (Co–Mo–Bi)

82,0% при 575°C и 75,0% при 525°C, что обусловлено условиями протекания процесса и эксплуатацией катализатора, а также подтверждает большую каталитическую активность образца по сравнению с модифицированными цеолитами.

thesis of lower olefins from C3-C4 alkanes on ZSM-5 zeolites modified with alkali metals. Russian Journal of Physical Chemistry, 2000.— $Vol.74.-N_2$ Suppl.3.—P.537-540.

МОДЕЛИРОВАНИЕ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ ГАЗА

И.М. Долганов, Р.Ф. Хосоенова, Н.А. Чиркина Научный руководитель – к.т.н., доцент И.М. Долганов

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, n.chirkina96@bk.ru

Природный газ в современном мире считают одним из наиболее распространенных источников энергии. Газ должен пройти промысловую подготовку для соответствия требованиям по качеству и энергетическим характеристикам. Основным принципом, лежащим в процессе подготовки газа, является низкотемпературная сепарация.

Технология базируется на охлаждении природного газа и отделения воды и жидких углеводородов. Однократная конденсация реализуется с помощью эффекта Джоуля-Томсона при температурах от минус 10 до минус 25 °C.

На рисунке 1 показана принципиальная схе-

ма установки низкотемпературной сепарации газа.

При проектировании процесса низкотемпературной сепарации необходимо учитывать, что происходит изменение параметров работы оборудования при изменении положения задвижек, расхода сырьевого потока и потока теплоносителя и других параметров. Изменение параметров происходит в результате переходных процессов, которые характеризуются постоянным стремлением установить в системе стационарный режим с новыми значениями управляющих параметров. Поэтому необходимо отслеживать зависимости различных переходных процессов