210 XVI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

СИСТЕМА АІ2О3-МАГНЕТИТ КАК НОСИТЕЛЬ ДЛЯ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ

<u>Сюэ Мэн</u>, А.Ж. Айтмагамбетова, Д.М. Ескожа Научный руководитель: А.Э. Илела Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>10detahy@tpu.ru</u>

SYSTEM Al₂O₃-MAGNETITE AS A CARRIER FOR MEDICINE

Xue Meng, A.Zh. Aitmagambetova, D.M. Eskozha Scientific Supervisor: A.E. Ilela National research Tomsk Polytechnic University, Russia, Tomsk, Lenin ave., 30, 634050 E-mail: 10detahy@tpu.ru

Abstract. Due to their excellent properties, nanoparticles such as Al_2O_3 and Fe_3O_4 are used in medical application for drug delivery. These materials are expected to be nontoxic and safe to human body. Aim of this study is to produce nanopowder from system Al_2O_3 -Magnetite as drug carriers with unique characteristic such as size and properties. Ideal temperature to produce nanopowders Al_2O_3 as component drug carriers is 600°C with velocity 12 K/min. Phase magnetite more active at low temperature 250°C with concentration 100%.

Введение. Важнейшим направлением современной фармакологии является адресная доставка лекарственных препаратов. Требования, предъявляемые к таким носителям следующие: отсутствие токсичности, большая удельная поверхность, наличие «активных участков» на поверхности для закрепления лекарств [1, 2]. Система на основе оксида алюминия и магнетита является перспективной для разработки в этом направлении, ее синтез и изучение структуры стало целью данной работы. Для получения магнетита использовали метод осаждения описанный в [3]. Для получения оксида алюминия использовали метод осаждения описанный в [3]. Для получения оксида алюминия использовали метод распылительной сушки [4, 5].

Экспериментальная часть. Для получения носителя были изучены суспензии, полученные методом обратного осаждения, из двух солей сульфата и нитрата алюминия. После осаждения в растворе аммиака суспензии промывали дистиллированной водой до полного удаления следов осадителя. Из суспензий порошок выделяли на установке нанораспылительной сушки (Nanospray B-90). процесса: скорость газового потока 140 л/мин, относительная интенсивность распыления – 50–70%, T = 60-80 °C, P = 120 Па, время работы установки 30–50 минут. Магнетит получали из растворов FeCl₃ и FeSO₄ при мольном соотношении 1:2. Готовую систему получали двумя способами: при совместном осаждении оксидов алюминия и железа и в два этапа, сначала синтезировали оксид алюминия, затем на него осаждали оксид железа. Смесь оксида алюминия и железа при различных соотношениях (3:1, 5:1, 7:1) отжигали при 250 и 600 °C.

Измерение удельной поверхности проводили по 4-х точечному методу БЭТ на специальной установке «БЭТ-анализатор МЕТА СОРБИ–М». В качестве газа-адсорбата использовали азот. В качестве газа-носителя –гелий.

Для установления фазового состава и определения размера областей когерентного рассеяния

ХVІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

(ОКР) порошки использовали метод рентгенофазового анализа (SHIMADZU XRD – 7000 X – RAY). **Результаты и обсуждение.** На первом этапе нами были изучены порошки основы бедующей системы: оксида алюминия. Для получения разной морфологии нами были использованы два типа аниона соли (нитрат и сульфат) и разные скорости нагрева порошков.

Из рис. 1 видно что, влияние температуры отжига порошков вполне закономерно: при повышении температуры уменьшается удельная поверхность и увеличивается размер ОКР (*maбл. 1*), свидетельствующий об увеличении размера частиц.

Влияние скорости нагрева на величину удельной поверхности однозначно: при увеличении скорости отжига возрастает пористость системы. В свою очередь нет прямой корреляции между размером ОКР и скоростью нагрева.

Скорость нагрева существенно влияет на фазовый состав порошков (рис. 2). Например, при высоких скоростях нагрева и относительно больших концентрациях порошок не успевает полностью

перейти в фазу корунда. Содержание этой фазы порядка 17% (рис. 2, *в*). Уменьшение начальной концентрации соли, из которой готовят суспензию, однозначно приводит к увеличению скорости кристаллизации оксида алюминия.

Таблица 1

211

Состав	С, Моль	Т отжига, °С	V, К/мин	Фаза (%)	ОКР
Al(NO ₃) ₃	0,5	600	3	γ -Al ₂ O ₃ = 85,4 ; θ -Al ₂ O ₃ = 14,6	9,32 ; 8,20
			6	γ -Al ₂ O ₃ = 61,1 ; θ -Al ₂ O ₃ = 38,9	9,31 ; 8,62
			12	γ -Al ₂ O ₃ = 70,6 ; θ -Al ₂ O ₃ = 29,4	9,13 ;7,89
		1250	3	α -Al ₂ O ₃ = 85,6 ; θ -Al ₂ O ₃ = 14,4	52,84 ; 30,43
			6	$\alpha - Al_2O_3 = 100$	61,90
			12	α -Al ₂ O ₃ = 17,1 ; θ -Al ₂ O ₃ = 82,9	8,51 ; 10,33
Al ₂ (SO ₄) ₃	0,25	600	3	δ -Al ₂ O ₃ = 62,6 ; θ -Al ₂ O ₃ = 37,4	9,11 ; 7,62
			6	γ -Al ₂ O ₃ = 82,8 ; θ -Al ₂ O ₃ = 17,2	9,15 ; 10,63
			12	γ -Al ₂ O ₃ = 67,5 ; θ -Al ₂ O ₃ = 32,5	8,86 ; 7,70
		1250	3	α -Al ₂ O ₃ = 44,0 ; θ -Al ₂ O ₃ = 56,0	57,88 ; 24,60
			6	$\alpha - Al_2O_3 = 100$	56,44
			12	α -Al ₂ O ₃ = 59,9 ; θ -Al ₂ O ₃ = 40,1	55,11;20,74

Результаты $P\Phi A u OKP Al_2O_3$

На рис 2, г представлен результат РФА для порошка оксида железа. Видно, что при температурах отжига от 100 до 250 °C порошок представлен фазой магнетита. При увеличении температуры обработки до 600°C образуется гематит и порошок теряет магнитные свойства.

Заключение. Таким образом, в результате проделанной работы можно рекомендовать оптимальные условия для получения системы оксид алюминия – магнетит:

1. Суспензия для получения порошка носителя готовится из нитрата алюминия (С =0,5 моль/ль)

212 ХVІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

2. Отжиг порошка Al₂O₃ при 600°С и скорости 12 К/мин.

3. Отжиг порошка Al₂O₃ с осажденным магнетитом 250°C.

Рис. 2. Дифрактограммы Al₂O₃, полученные из разных солей, при различных температурах отжига и скоростях нагрева (а, б, в), и магнетита (г)

СПИСОК ЛИТЕРАТУРЫ

- 1. Koren E., Torchilin V.P. Drug carriers for vascular drug delivery //Life. -2011. -Vol. 63(8). -p. 586-595.
- Gong R., Chen G. Preparation and application of functionalized nano drug carriers // Saudi Pharmaceutical Journal. – 2016. – Vol. 24(3). – P. 254–257.
- Wang Y., Zhang Y., Yuan X. Preparation of magnetic ferrotitanium tetraoxide by co-precipitation method and hydrothermal method : Comparative study of rice granules // Shandong Chemical Industry. – 2016. – Vol. 295(21). – P. 47–48.
- Илела А. Э., Лямина Г. В., Качаев А. А., Амантай Д., Колосов П. В., Чепрасова М. Ю. Получение нанопорошков оксида алюминия и циркония из растворов их солей методом распылительной сушки // Бутлеровские сообщения. – 2013. – Т.33. – №.2. – С.119–124.
- 5. Manual Book Nano Spray Dryer B-90, Version A. Website Address: www.buchi.com. 2011.