СЕКЦИЯ 9. ГЕОЭКОЛОГИЯ, ОХРАНА И ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ. ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ГЕОЭКОЛОГИИ

территории, зависящей, в свою очередь, от количественного состава образующихся отходов. Таким образом, пригодность нефтешламов для использования в качестве вторичного сырья должна определяться их составом, свойствами и экологической опасностью.

Для выбора метода утилизации и\или переработки необходимо знать физико-химические характеристики и класс опасности предполагаемого нефтешлама, что позволит выбрать наиболее эффективные методы работы с данным углеводородным загрязнением, а также эффективный способ дальнейшей реализации нефтепродукта после завершения процесса утилизации.

На основании табл. 1 возможно обоснование подхода к рациональной обработке нефтешламов.

Таблица 1

4	~	
Анализ	CROHEMR	нефтешламов

Критерий	Единица измерения	Показатели исходного продукта	
Тип нефтешлама	-	Жидкий	Твердый
Содержание воды	% об., не более	50	25
Содержание углеводородов	% об., не более	До 95	45
Размер твердых частиц	мм, не более	5	150
Температура застывания	°C	+10	+3
Вязкость	сСт, не более	1000	-
Температура вспышки в закрытом типе	°C	Не ниже 45	Не ниже 45

Углеводородный компонент нефтешламов может быть представлен различными соединениями, которые в результате длительного хранения, под действием природных сил, могут преобразовываться в другие соединения за счет процессов конденсации, полимеризации, изомеризации.

Нефтяные шламы образуются как при проведении таких производственных процессах, как переработка, добыча и транспортировка нефти, так и при их нарушении.

Анализ возможных способов переработки

Таблица 2

1211 maring desired tended ded incepeparation				
Тип нефтешламов	Опасность	Способы обработки		
Природные нефтешламы	средняя	Фильтрация		
Буровые нефтешламы	низкая	Сжигание, фильтрация		
Резервуарные нефтешламы	средняя	Отстаивание		
Грунтовые нефтешламы	средняя	Механический, термический, пиротехнический, метод предотвращения возгорания		

Природные нефтешламы - отходы, образующиеся на дне различных водоемов после произошедшего разлива нефти;

Буровые нефтешламы - отходы, образующиеся при бурении скважин, различными буровыми растворами;

Резервуарные нефтешламы - отходы, которые образуются при хранении и транспортировке нефти в самых разнообразных резервуарах;

Грунтовые нефтешламы - являются продуктом соединения почвы и пролившейся на неё нефти, причиной этого может быть, как технологический процесс, так и авария;

Ввиду разнообразия применяемых средств образования и переработки нефтешламов(табл.1,2) целесообразно создать устройство комплексного воздействия на отмеченные нефтешламы в виде мобильной установки.

Литература

- 1. Академик. Нефтешламы [Электронный ресур]: https://dic.academic.ru/dic.nsf/ruwiki/1060509/Нефтешламы (дата обращения 23.11.2018)
- 2. Грошева, М. А. Инновационно-инвестиционное обеспечение переработки нефтесодержащих отходов: Автореф. дисс. доктора экон. наук / М. А. Грошева. Самара, 2006.
- 3. Пименов А.А., Быков Д.Е., Васильев А.В. О подходах к классификации отходов нефтегазовой отрасли и побочных продуктов нефтепереработки // Вестник СамГТУ, технические науки. 2014. № 4 (44). С. 183-190.

ТОКСИЧНЫЕ ЭЛЕМЕНТЫ В ПОЧВАХ ЮГА КУЗБАССКОГО РЕГИОНА И ИХ ВЛИЯНИЕ НА ЗДОРОВЬЕ НАСЕЛЕНИЯ

М. Г. Кудрявцева

Научный руководитель доцент Н. А. Осипова

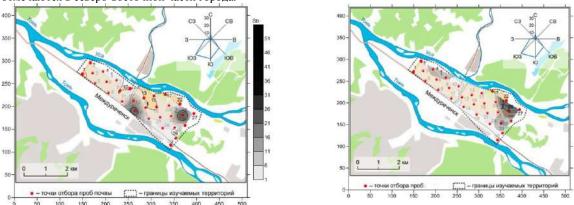
Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Изучение закономерностей распространения и аккумуляции тяжелых металлов в депонирующих средах, в частности в почвах, является важной и актуальной задачей при анализе геоэкологической ситуации и уровне ее изменения в регионе.

Объектом изучения стал город Междуреченск, в котором угольная отрасль является градообразующей. Доля предприятий, осуществляющих добычу и переработку полезных ископаемых, в структуре промышленного производства города составляет 90 %. Предприятия по добыче угля окружают город со всех сторон [5].

Поверхностные слои почвы вследствие своей структуры аккумулируют загрязняющие вещества, негативно воздействующие на организм человека, к которым относятся и тяжелые металлы, представляющие опасность для здоровья человека.

Пробы почв (30 проб) и твердого осадка снега (30 проб) были отобраны в один временной интервал, в мае и феврале 2015 г., по одной и той же схеме пробоотбора, соответственно. Методика пробоотбора и анализа, а также геохимические особенности территории по данным геохимических исследований описаны ранее [6, 7].


Сопоставление данных о содержании токсичных элементов в почве и снеге, в пробах, отобранных в одном и том же временном промежутке и по одной схеме пробоотбора ранее не проводилось, и представляет интерес, так как накопление элементов и в почве, и в снеге, характеризует уровень антропогенной нагрузки и влияние ключевых загрязнителей.

В большинстве случаев к токсичным элементам относят: Нg (ртуть), Pb (свинец), Cd (кадмий), As (мышьяк), Sb (сурьма), Sn (олово), Zn (цинк), Al (алюминий), Be (бериллий), Fe (железо), Cu (медь), Ba (барий), Cr (хром), Tl (таллий) [4].

Ртуть является одним из самых опасных и высокотоксичных элементов, имеющим способность аккумулироваться в растениях и в организме животных и человека. Ртуть способна оказывать токсическое воздействие на нервную, иммунную и пищеварительную системы, а также на легкие, кожу, глаза и почки. Содержание ртути изменяется в почвах от 0,01 мг/кг до 0,173 мг/кг, при среднем значении - 0,057 мг/кг. Средние содержания ртути в почвах Междуреченска превышают кларк элемента в земной коре по [2] до 8 раз.

Мышьяк относится к числу наиболее сильных и опасных ядов. При хроническом воздействии последовательно аккумулируется в коже, волосах и ногтях [3]. Средние содержания данного элемента не только в почвах, но и в снеговом покрове превышают кларковые содержания в земной коре до 2 раз [по 2]. Повышенные концентрации Аs отмечаются в северо-западной части города, как в почвах, так и в снеговом покрове.

Сурьма, особенно Sb III, а также ее соединения, ядовита, хотя как микроэлемент присутствует в организме человека и животных. Сурьма оказывает раздражающий и кумулятивный эффект. Аккумулируется в щитовидной железе, подавляет её функцию и является причиной эндемического зоба. Среднее содержание Sb в почвах составляет 4,1 мг/кг. Концентрации данного элемента не только в почвах, но и в снеговом покрове превышают Кларк элемента в земной коре по [2] до 53 в почвах и от 2 до 36 раз в снеговом покрове (рис. 1). Повышенные концентрации Sb отмечаются в северо-восточной части города.

Puc. 1 Распределение кларка концентрации Sb в почвах (слева) и в твердом осадке снега (справа) на территории г. Междуреченск относительно Кларка элемента в земной коре по [2]

Цинк. Все соли цинка обладают высокой токсичностью для человека, особенно сульфаты и хлориды. Среднее содержание Zn в почвах составляет 114,5 мг/кг. Повышенные концентрации Zn отмечаются в северовосточной части города. Концентрации данного элемента не только в почвах, но и в снеговом покрове превышают кларк элемента в земной коре по [2] до 6 раз (рис. 2).

СЕКЦИЯ 9. ГЕОЭКОЛОГИЯ, ОХРАНА И ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ. ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ГЕОЭКОЛОГИИ

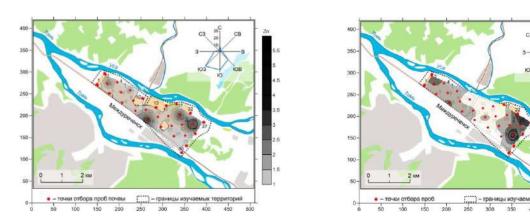


Рис. 2 Распределение кларка концентрации Zn в почвах (слева) и в твердом осадке снега (справа) на территории г. Междуреченск относительно Кларка элемента в земной коре по [2]

Железо - также высокотоксичный элемент в окружающей среде. Люди, вдыхающие пыль, содержащую железо, страдают заболеваниями легких, сердечно-сосудистой дистонии, снижением секреции желудка, изменением состава крови, возникновением стоматита, гастрита. Средние содержания железа в почвах Междуреченска незначительно превышают кларк элемента в земной коре по [2].

Барий. Все растворимые в воде соединения бария высокотоксичны. Вдыхание пыли с соединениями бария приводит к многочисленным заболеваниям дыхательных путей, которые отягощаются фиброзным процессом. Среднее содержание Ва в почвах составляет 494,13±125,81 мг/кг. Высокие содержания Ва прослеживаются в северовосточной части города. Концентрации данного элемента не только в почвах, но и в снеговом покрове превышают кларк элемента в земной коре по [2] в 2 - 3 раза.

Хром. Токсичность хрома зависит от степени окисления. Соединения хрома (VI) в сотни и тысячи раз гораздо токсичнее Сг (III). Источниками попадания соединений хрома в организм служат дыхательный аппарат и система пищеварения. Токсическое воздействие на организм характеризуется преимущественным поражением органов дыхания и желудочно-кишечного тракта. Пыль плохо растворимых соединений хрома (хромита, феррохрома) может вызывать пневмокониозы [1]. Средние содержания хрома в почвах Междуреченска превышают кларк элемента в земной коре по [2] до 2 раз. Высокие содержания Сг прослеживаются в северо-восточной части города.

В результате работы определены содержания токсичных элементов в почвах города Междуреченска. Токсичные вещества оказывают существенное влияние на здоровье человека, причем степень выраженности воздействия зависит от концентрации, периодичности и времени воздействия вещества, а также состояния окружающей среды и состояния организма самого человека. Опасность состоит не только в том, что при длительном проживании в одной и той же местности, постоянно испытывая воздействие вредных веществ, возможно пролонгированное воздействие на человека, а также в усвоении незначительных концентраций веществ в течение многих лет, приводящее к их аккумулированию в костях и органах.

Литература

- 1. Безак-Мазур Е., Шендрик Т. Г. Трансграничные проблемы токсикологии окружающей среды. Донецк: Издательство ГП "ИАЦ «Донбассинформ», 2008. 300 с.
- 2. Григорьев, Н.А. Распределение химических элементов в верхней части континентальной коры / Н. А. Григорьев. Екатеринбург: УрО РАН, 2009. - 382 с.
- 3. Зинина О. Т. Влияние некоторых тяжелых металлов и микроэлементов на биохимические процессы в организме человека // Избранные вопросы судебно-медицинской экспертизы. Хабаровск, 2001. № 4. С. 99 105.
- 4. Карпова, Г. В. Общие принципы функционального питания и методов исследования свойств сырья продуктов питания. [Текст] / Г. В. Карпова, М. А. Студянникова. Оренбург: ОГУ, 2012. Ч. 2.- 214 с.
- Назьина К. С. Рекультивация земель, нарушенных горными работами, в городе Междуреченске южного Кузбасса / К. С. Назьина, М. В. Маслов // Научный вестник Московского государственного горного университета. - Москва, 2012. - № 11. - С. 72 - 80.
- 6. Николаенко А. Н. Влияние угольных предприятий на загрязнение снегового покрова и здоровье населения г. Междуреченска // Проблемы геологии и освоения недр: Труды XXI Международного симпозиума имени академика М.А. Усова студентов и молодых ученых, посвященного 130-летию со дня рождения профессора М.И. Кучина. Томск, 2017. Т.1. С. 793 794.
- 7. Полякова Ю. А. Эколого-геохимическое исследование почв индустриальных районов Кузбасса // Проблемы геологии и освоения недр: Труды XXII Международного симпозиума имени академика М.А. Усова студентов и молодых ученых, посвященного 155-летию со дня рождения академика В.А. Обручева, 135-летию со дня рождения академика М.А. Усова, основателей Сибирской горно-геологической школы, и 110-летию первого выпуска горных инженеров в Сибири. Томск, 2018. Т.1. С. 836 838.