СЕКЦИЯ 4. ГЕОЛОГИЯ НЕФТИ И ГАЗА. СОВРЕМЕННЫЕ МЕТОДЫ ПОИСКОВ И РАЗВЕДКИ УГЛЕВОДОРОДНОГО СЫРЬЯ. ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ГЕОЛОГИИ НЕФТИ И ГАЗА.

К ВОПРОСУ О ПРИРОДЕ УГЛЕВОДОРОДОВ МЕСТОРОЖДЕНИЙ ЮГО-ВОСТОКА ЗАПАДНОЙ СИБИРИ

Л.М. Лаухин

Научный руководитель профессор И.В. Гончаров

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Согласно органической теории происхождения нефти, считается, что нефть образуется из биомассы (органического вещества) в ходе стадийного физико-химического процесса. В течение седиментогенеза лишь часть биомассы достигает дна бассейна осадконакопления и попадает в восстановительные условия, где продолжается ее дальнейшее преобразование в ходе диагенеза и катагенеза. В течение стадии диагенеза биомасса преобразуется в кероген, а в ходе катагенеза из керогена образуются углеводороды.

Считается, что основным поставщиком биомассы в морских бассейнах осадконакопления является планктон (фитопланктон, зоопланктон), бактерии, зообентос, рыбы. Однако особое внимание уделяется первичным продуцентам органического вещества, которые генерируют органическое вещество из углекислого газа и воды в процессе фотосинтеза. К фитопланктону относятся различные одноклеточные водоросли (диатомовые, кокколитофориды, сине-зеленые и др.). Все фотосинтезирующие организмы сосредоточены в фотической зоне.

Все последующие организмы (гетеротрофы), использующие биопродуценты, не будут создавать новой биомассы, но будут лишь изменять её состав.

Анализ состава живых организмов, органического вещества и нефтей, проведенный рядом исследователей, выявил определенные черты сходства. Особо важное значение имело открытие в нефтях унаследованных от живого вещества химических соединений (хемофоссилий/биомаркеров).

Биомаркеры (хемофоссилии) – органические соединения, сохранившие структуру своих биологических предшественников.

К числу наиболее используемых биомаркеров относятся преобразованные остатки хлорофилла – пристан и фитан (насыщенные изопреноиды), а также стераны и гопаны (полициклические углеводороды).

Акцент на хлорофилле не случаен. Он входит в состав фитопланктона и других фотосинтезирующих организмов и играет ключевую роль в фотосинтезе, в результате которого из неорганического вещества образуется органическое.

Боковая фитольная цепь хлорофилла – наиболее важный источник изопреноидных структур в биосфере. Стереохимия изопреноидов C20 и родственных им кислот, находящихся в осадках, указывает на то, что они произошли от фитольной цепи хлорофилла [5].

Фитол попадает в осадки вместе с хлорофиллом. В восстановительных условиях (сероводородное заражение придонных вод), в результате гидрогенизации он превращается в гидрофитол и встраивается в структуру керогена. На стадии катагенеза при термическом разрушении керогена из него образуется изопреноидный углеводород фитан (С20), входящий в состав любой нефти. В окислительных условиях фитол окисляется до фитановой кислоты, которая также встраивается в структуру керогена, которая позднее, на стадии катагенеза, в результате декарбоксилирования даёт пристан (С19).

Определение в химическом составе нефти конкретных биомаркеров позволяет получить не только качественную характеристику состава нефти, но и выяснить условия, в которых происходило накопление в осадках органического вещества (фациальную обстановку).

Использование в органической геохимии молекулярных параметров существенно расширило поле действий геохимиков.

Существует множество различных молекулярных параметров, каждый из которых несет определенную информацию о типе биопродуцентов, условиях их накопления и/или условий дальнейшего преобразования, а также об условиях преобразования нефти в залежи. Наиболее достоверную информацию можно получить от молекулярных параметров, которые зависят от минимального количества вторичных факторов, т.е. несут генетическую информацию.

В данной работе задействованы два молекулярных параметра: отношение пристана к фитану (Pr/Ph) и изопреноидный коэффициент (Ki).

Отношение пристана к фитану (Pr/Ph), главным образом, зависит от окислительно-восстановительной обстановки среды (о чем говорилось выше). Значение Pr/Ph, в основном, закладывается на стадии седиментогенеза, когда погружающаяся на дно вместе с осадком биомасса непосредственно контактирует с кислородом, растворенным в воде бассейна осадконакопления. В связи с этим, данное отношение может быть использовано в качестве меры аэробного (кислородного) окисления исходной биомассы.

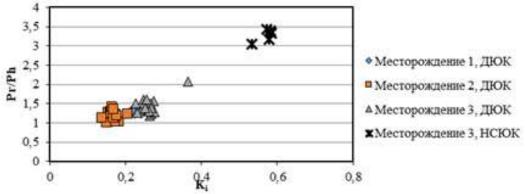
Коэффициент изопреноидности (Кі) используется в качестве молекулярного параметра, который отражает соотношение изопреноидов и н-алканов в нефтях.

В изменении Кі с глубиной для нефтей Западной Сибири прослеживается определенная закономерность. Для нефтей, залегающих на глубинах менее 2000 м, Кі может меняться в широких пределах — от 0,4 до 15 и более. Начиная с глубины 2800 м и ниже, Кі остается на уровне 0,3 и немного ниже [2]. В залежах, где пластовая температура ниже 70 С, могут залегать нефти с высоким значением Кі, или нефти в которых н-алканы и изопреноиды отсутствуют вообще, что может быть связано с биодеградацией нефтей. Однако в Западной Сибири на глубинах 2800–3000 м и более такие нефти не выявлены [2].

Любая закономерность, в том числе и эта, обусловлена влиянием фактора или группы факторов. Одним из главных факторов в изменении Ki с глубиной можно считать геотермический режим, который контролирует

процессы преобразования углеводородов на самых различных стадиях литогенеза (генерация углеводородов, их миграция, аккумуляция, консервация и дальнейшее существование в залежах).

Кроме того, важно отметить, что пластовая температура является одним из существенных ограничителей масштабов развития микробиологической деятельности в анаэробных условиях, что также могло повлиять на формирование геохимического облика нефтей [3].


Таким образом, коэффициент Кі для рассматриваемых нефтей характеризует катагенетическую зрелость нефтей. Данный молекулярный параметр уменьшается с ростом катагенетической преобразованности нефти.

В лаборатории «Геохимии и пластовых нефтей», которую возглавляет профессор И.В. Гончаров, были проанализированы глубинные пробы нефтей трех месторождений (1, 2 и 3) юго-востока Западной Сибири и определены молекулярные параметры Рг/Рh и Кi. Глубинные пробы отобраны из нижнесреднеюрского (НСЮК) и доюрского (ДЮК) комплексов. Для проб нефтей из нижнесреднеюрского комплекса месторождения 3 отношение пристана к фитану Pr/Ph изменяется преимущественно в интервале 3,0–3,5. Такие значения характеризуют неморские условия осадконакопления и свидетельствуют о том, что нефти образовались из керогена III типа (согласно классификации [5]), с которым не связано образование крупных месторождений нефти. Для этого типа керогена характерно накопление органического вещества в окислительной обстановке. Для проб нефтей из доюрского комплекса всех трех месторождений молекулярный параметр Pr/Ph изменяется преимущественно в интервале 1–1,5. Такие значения характеризуют морские условия осадконакопления и свидетельствуют о том, что нефти образовались из керогена II типа (согласно классификации [5]), с которым связаны все известные в мире крупные и гигантские месторождения. Для этого типа керогена характерно накопление органического вещества в умеренно-восстановительной обстановке.

Всё это согласуется с результатами восстановления палеогеографических обстановок в девоне на основе кернового и палеонтологического материала, полученными Е.А. Елкиным, В.И. Красновым и др. [4].

Коэффициент Кі для нефтей нижнесреднеюрского комплекса месторождения 3 изменяется в интервале 0.53-0.59, а для нефтей доюрского комплекса всех трех месторождений -0.13-0.37. Такие значения указывают на более высокую катагенетическую зрелость нефтей ДЮК.

В связи с тем, что используемые молекулярные параметры связаны с типом органического вещества, условиями его накопления и дальнейшего преобразования, которые определяют химический состав нефти, то их можно использовать для осуществления генетической типизации нефтей (рис.).

 $Puc.\ 1\ 3$ ависимость Pr/Ph от K_i для нефтей трех месторождений юго-востока 3ападной Cибири

Из рисунка видно, что пробы нефтей доюрского комплекса всех трех месторождений обособились в нижней части графика. Эта область характеризует палеозойский тип нефтей [1]. В свою очередь, область графика, где обособились пробы нефтей месторождения 3 из нижнесреднеюрского комплекса, характеризует тогурский тип нефтей. Единичная проба нефти с месторождения 3, расположенная между рассмотренными областями, представляет собой смесь нефтей палеозойского и тогурского типа.

Таким образом, определив молекулярные параметры (отношение пристана к фитану Pr/Ph и коэффициент изопреноидности Ki) для нефтей трех рассматриваемых месторождений, можно сделать вывод, что на территории юго-востока Западной Сибири выделяется не только привычный баженовский тип нефтей, но и отличные от него тогурский и палеозойский типы нефтей.

Литература

- 1. Генетические типы и природа флюидов углеводородных залежей юго-востока Западной Сибири / И.В. Гончаров, Н.В. Обласов, А.В. Сметанин и др. // Нефтяное хозяйство, 2012. № 11. С. 8 13.
- 2. Гончаров И.В., Рыльков А.В. Изопреноидные углеводороды в нефтях Западной Сибири // Геология нефти и газа, 1982. № 4. С. 23 27.
- 3. Забродина М.А., Арефьев О.А., Макушина В.И., Петров А.А. Химические типы и превращения нефтей в природе // Нефтехимия, 1978. Т. 18. № 2. С. 280 289.
- 4. Стратиграфия нефтегазоносных бассейнов Сибири. Палеозой Западной Сибири / Е.А. Елкин, В.И. Краснов, Н.К. Бахарев и др. Новосибирск: Изд-во СО РАН, филиал «ГЕО», 2001. 166 с.
- 5. Тиссо Б., Вельте Д. Образование и распространение нефтей. М.: Мир, 1981. 501 с.