СЕКЦИЯ 13. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ПРИРОДНЫХ РЕСУРСОВ. ПОДСЕКЦИЯ 2. ХИМИЧЕСКИЕ ТЕХНОЛОГИИ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ГОРЮЧИХ ИСКОПАЕМЫХ

ИССЛЕДОВАНИЕ ДЕЙСТВИЯ НИЗКОТЕМПЕРАТУРНЫХ ПРИСАДОК К ДИЗЕЛЬНЫМ ТОПЛИВАМ А.М. Орлова

Научный руководитель - доцент М.В. Киргина *Национальный исследовательский Томский политехнический университет, г. Томск, Россия*

Рост потребления нефтепродуктов, а также стремительное освоение северных территорий приводит к необходимости использования для производства топлив нефтей различных месторождений, продуктов вторичных процессов переработки, а также требует поиска новых источников сырья, позволяющих производить нефтепродукты, пригодные для эксплуатации в условиях арктического климата. Вместе с тем на сегодняшний день, получение зимних и арктических марок дизельного топлива, удовлетворяющих требованиям [3], невозможно без вовлечения дорогостоящих депрессорных присадок. В ходе работы были исследованы два образца прямогонного дизельного топлива (образцы №№1, 2), полученные с различных месторождений Томской области.

Согласно [3] была определена температура помутнения ($T_{\rm II}$) и температура застывания ($T_{\rm 3}$) для каждого из образцов прямогонного дизельного топлива, предельная температура фильтруемости ($\Pi T \Phi$), была определена согласно [2]. Полученные результаты представлены в Таблице 1.

Таблица 1 Результаты определения низкотемпературных свойств исследуемых образцов дизельного топлива

Образец	T_{Π} , $^{\circ}$ C	<i>ПТФ</i> ,°С	T_3 , $^{\circ}$ C
дизельного топлива			
1	-12	-25	-45
2	-13	-17	-39

Сравнивая полученные результаты с требованиями, предъявляемыми к дизельным топливам согласно [3] по предельной температуре фильтруемости, можно сделать вывод что, образец прямогонного дизельного топлива №1 соответствует зимней марке ($\Pi T\Phi$ не более -25 °C), а образец прямогонного топлива №2 соответствует межсезонной марке ($\Pi T\Phi$ не более -15 °C).

На втором этапе исследования были приготовлены смеси образцов прямогонного дизельного топлива с присадками, улучшающими низкотемпературные свойства — депрессорами. Для приготовления смесей были использованы 3 вида низкотемпературных присадок (таблица 2).

Кодировка низкотемпературных присадок

Таблица 2

Название присадки	Кодировка присадки	Концентрация, мл на 100 мл
		дизельного топлива
		(рекомендация производителя)
«Антигель +» XADO	A	0,1
«Runway»	В	0,231
«Diesel Flieb Fit» LIQUI MOLY	С	0,3

Для приготовленных смесей по аналогичным методикам были определенны низкотемпературные свойства. Полученные результаты представлены в таблице 3.

лученные результаты представлены в таолице 3. Таблица 3 Результаты исследования низкотемпературных свойств смесей: прямогонное дизельное топливо/присадка

Образец	T _π , °C			<i>ПТФ</i> , °С			T₃, °C					
дизельного	Без	С		Δ	Без		С	Δ	Без		С	Δ
топлива	присадки	присадкой			присадки	присадкой			присадки	присадкой		
1	-12	Α	-12	0	-25	Α	-31	6	-45	A	-50	5
		В	-18	6		В	-33	8		В	-53	8
		С	-12	0		C	-28	3		С	-48	3
2	-13	Α	-15	2	-17	Α	-24	7	-39	A	-41	2
		В	-16	3		В	-26	9		В	-48	9
		С	-15	2		С	-21	4		С	-40	1

Из полученных результатов видно, что низкотемпературные присадки практически не оказали влияния на температуру помутнения образцов, но заметно снизили ПТФ и температуру застывания. Кроме того, из результатов представленных в Таблице 3 можно видеть, что наиболее эффективной является присадка В, так как данная присадка в наибольшей степени снижает все низкотемпературные свойства образцов (температуру помутнения в среднем на $4.5\,^{\circ}$ C, ПТФ и температуру застывания в среднем на $8.5\,^{\circ}$ C) в сравнении с присадками А (снижает температуру помутнения в среднем на $1\,^{\circ}$ C, ПТФ в среднем на $6.5\,^{\circ}$ C, температуру застывания в среднем на $3.5\,^{\circ}$ C) и С (снижает температуру помутнения в среднем на $1\,^{\circ}$ C, ПТФ в среднем на $3.5\,^{\circ}$ C, температуру застывания в среднем на $2\,^{\circ}$ C).

Также можно видеть, что добавление присадки В к образцу прямогонного дизельного топлива №2 позволяет получить топливо, соответствующее зимней марке, согласно требованиям [3].

ПРОБЛЕМЫ ГЕОЛОГИИ И ОСВОЕНИЯ НЕДР

Таким образом, добавление депрессорных присадок к образцам прямогонного дизельного топлива положительно повлияло на их низкотемпературные свойства, и обеспечило возможность использования образца №2 в зимних условиях.

Литература

- 1. ГОСТ 5066-91 «Топлива моторные. Методы определения температуры помутнения, начала кристаллизации и кристаллизации» [Электронный ресурс] http://docs.cntd.ru/document/1200007918.
- 2. ГОСТ 22254-92 «Топливо дизельное. Метод определения предельной температуры фильтруемости на холодном фильтре» [Электронный ресурс] http://docs.cntd.ru/document/1200007956.
- 3. ГОСТ 305-2013 «Топливо дизельное. Технические условия» [Электронный ресурс] http://docs.cntd.ru/document/1200005428.

СОСТАВ СОЕДИНЕНИЙ, СВЯЗАННЫХ ЧЕРЕЗ СУЛЬФИДНЫЕ МОСТИКИ В МОЛЕКУЛАХ СМОЛ И АСФАЛЬТЕНОВ БИТУМОИДА ДМИТРИЕВСКОГО ГОРЮЧЕГО СЛАНЦА А.В. Петров¹, Е.Ю. Коваленко¹, А.А. Гринько²

Научный руководитель - старший научный сотрудник Е.Ю. Коваленко¹

¹Институт химии нефти Сибирского отделения Российской академии наук, г. Томск, Россия ²Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Интенсивное потребление нефти и природного газа, при ограниченности их легкодоступных ресурсов, обуславливает расширение масштабов использования альтернативных источников сырья для топливно-энергетической и химической промышленности, в частности горючих сланцев (ГС). Среди известных видов твердого топлива ГС занимают особое место, поскольку представляют собой сложный органоминеральный комплекс [4], содержащий условно от 20 до 50 % органического вещества (ОВ) преимущественно сапропелевой природы. По запасам ГС Россия занимает одно из первых мест в мире и имеет опыт в области технологии их переработки и применения. Несмотря на значительные для переработки потенциальные запасы и благоприятные условия добычи, месторождения ГС в настоящее время не разрабатываются и не находят промышленного использования. Одним из сдерживающих факторов является недостаток информация о составе растворимого ОВ и керогена. В литературе последних лет основное внимание уделяется химическим и геохимическим характеристикам резервуаров исходных пород с акцентом на молекулярные характеристики низкомолекулярных составляющих — масел [3,6]. В своем сообщении мы уделили внимание составу структурных фрагментов, связанных через сульфидные мостики в молекулах высокомолекулярных компонентов - асфальтенов и смол, которые составляют основную массу ОВ. Известно, что алифатические связи С-S могут выступать в качестве мостиков, сшивающих отдельные фрагменты молекул асфальтенов и смол между собой или с поликонденсированным ядром их молекул [2].

Образцы асфальтенов и смол выделяли из растворимого органического вещества ГС Дмитриевского месторождения (Кузбасс) по стандартной методике, включающей стадии деасфальтенизации избытком петролейного эфира с получением асфальтенов (31,9 %) и последующее хроматографическое разделение мальтенов на силикагеле АСК на масла (28,5 %) и смолы (39,6 %).

Для разрушения сульфидных мостиков к исходному образцу асфальтенов или смол (~0.01 г) добавляли хлорид никеля (1 г), 100 мл раствора, содержащего тетрагидрофуран и метанол в объемном отношении 1 : 1, и перемешивали смесь на ледяной бане в течение 30 минут. В случае неполного растворения исходного образца дополнительно добавляли по каплям тетрагидрофуран. Затем небольшими порциями в течение 16 ч добавляли NaBH₄ (трехкратный избыток от массы навески анализируемого образца). Полученную реакционную смесь разделяли центрифугированием. Органический слой отделяли. Остаток экстрагировали смесью хлороформ: н-гексан (1 : 3) до исчезновения окраски растворителя. Экстракт и органический слой объединяли, отмывали насыщенным водным раствором хлорида натрия, сушили над безводным сульфатом натрия, растворитель отгоняли. Полученный жидкий продукт деструкции сульфидных связей хроматографически разделяли на силикагеле (100/160) на фракции относительно неполярных и полярных соединений, используя для десорбции соответственно смеси н-гексана и бензола (7 : 3) и этанола и хлороформа (1 : 1) [5]. Основную массу продуктов деструкции в обоих случаях составляют полярные компоненты, при этом выход полярных соединений в продуктах деструкции молекул смол несколько выше (68 %), чем в продуктах деструкции молекул асфальтенов (62 %).

Анализ неполярных фракций методом хроматомасс-спектрометрии (Γ X–MC) с использованием DFS прибора «Thermo Scientific» [2] показал, что в молекулах асфальтенов и смол битумоида через сульфидные мостики связаны насыщенные и ароматические УВ и гетероорганические соединения (Γ OC).

Среди насыщенных УВ идентифицированы алканы (m/z 57), представленные гомологическими рядами налканов от C_{15} до C_{34} и от C_{14} до C_{34} , с максимумом в молекулярно-массовом распределении на C_{25} и C_{24} соответственно для асфальтенов (1) и смол (2), пристаном и фитаном (рис. 1).