РАЗРАБОТКА АЛГОРИТМА УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ НА ОСНОВЕ МЕТОДА СИНТЕЗИРОВАННОЙ АПЕРТУРЫ ДЛЯ КОНТРОЛЯ МАТЕРИАЛОВ С ВЫСОКИМ УРОВНЕМ СТРУКТУРНЫХ ШУМОВ

<u>И.С. ПЕТРОВ,</u> Д.О. ДОЛМАТОВ, Д.А. СЕДНЕВ Томский политехнический университет E-mail: iliaserpetrov@gmail.com

На сегодняшний день в атомном машиностроении широкое использование получили литейные стали. Одним из методов, применяемых в неразрушающем контроле отливок, является ультразвуковая дефектоскопия [1].

Ультразвуковой контроль отливок связан с рядом сложностей, обусловленных сложной формой подобных деталей, наличием конструктивных отражателей и крупнозернистой структурой таких объектов [2]. Для решения задачи повышения достоверности результатов ультразвукового контроля, а также для его автоматизации разрабатываются и все больше находят свое применение роботизированные системы ультразвуковой томографии.

На сегодняшний день одним из подходов для повышения отношения сигнал/шум результатов контроля является применение метода синтезированной апертуры. В данной работе рассматривается возможность использования применения алгоритма на основе метода синтезированной апертуры с анализом мгновенной фазы. Были проведены компьютерное моделирование и эксперимент на литом стальном бруске с отверстиями диаметром 2 мм для верификации результатов исследования.

В разработанной модели тестировалось влияние алгоритма при различных уровнях шумов. Результаты моделирования представлены на рисунке 1.

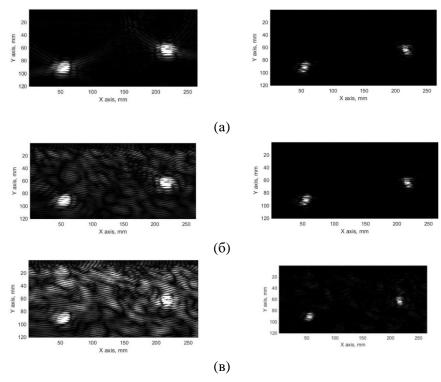


Рисунок 1 — Результаты моделирования (Слева — классический SAFT, справа — SAFT с фазокоррекцией, а — без шумов, б — средний уровень шумов, с — высокий уровень шумов)

Результаты эксперимента представлены на рисунке 2. Цвет отвечает за амплитуду эхо-сигнала.

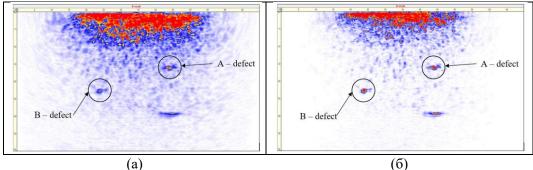


Рисунок 2 – В-скан до (а) и после (б) обработки

Результаты расчетов соотношения сигнал-шум представлены в таблице 1.

Таблица 1 – Соотношение сигнал шум для дефектов.

	С фазокоррекцией	Без фазокоррекции
Defect A	14.3427 dB	7.744 dB
Defect B	8.5215 dB	5.1859 dB

На основании полученных данных можно сделать вывод, что данная методика может применяться для дефектоскопии отливок на производстве, в частности в системах роботизированного контроля.

Список литературы

- 1. Назаратин В.В. Технология изготовления стальных отливок ответственного назначения. М: Машиностроение, 2006. 234 с.
- 2. Третьякова Н.В. Основы литейного производства: Учебное пособие. Иваново: Ивановский государственный энергетический университет, 2012. 107 с.