
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

PFSD-2019

IOP Conf. Series: Materials Science and Engineering 597 (2019) 012075

IOP Publishing

doi:10.1088/1757-899X/597/1/012075

1

Direct integrators of modified multistep method for

the solution of third order boundary value problem

in ordinary differential equations

U Mohammed1, M Semenov2, A I Ma’ali3, A Abubakar3, and
H Abdullah1

1Federal University of Technology, Minna, Nigeria
2National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk, Russia, 634050
3Ibrahihim Badamasi Babangida University Lapai, Niger State, Nigeria

E-mail: 1umaru.mohd@futminna.edu.ng, 2sme@tpu.ru

Abstract. In this paper, we propose an efficient modified multistep method for direct solution
of boundary value problems (BVPs) using multistep collocation approach. The continuous form
was evaluated at grid and off-grid points to obtain the multiple finite difference schemes. The
basic properties, such as order and error constants, zero stability and convergence analysis
of the proposed methods were investigated. Numerical experiment were performed to show
the efficiency of the method and the results were compared with the existing methods in the
literature.

1. Introduction
The application of mathematical formulation in science and engineering is given by a boundary
value problem (BVP):

y′′′ = f(x, y, y′, y′′), y(a) = y0, y′(a) = δ0, y(b) = yM , (1a)

y′′′ = f(x, y, y′, y′′), y(a) = y0, y′(a) = δ0, y′(b) = yM . (1b)

There are many methods to solve third order ordinary differential equations (ODEs) (1). Most
of these methods are solved BVP by reducing a higher ODEs to an equivalent system of first
order ODEs which take a lot of time and human effort. Alternative approach is to solve higher
ODEs directly. In the paper [1] authors investigated two- and three-stage Runge-Kutta type
methods for special third order ODEs. Higher order linear multi-step methods were proposed
by Jator [2] to the numerical integration of third order BVP. The case of the four-points block
hybrid collocation method with two off-step points to solve general third order ODEs directly
was studied by Yap and Ismail [3]. In the paper by Jikantoro et al. [4] presented the theory of
B-series and the associated rooted trees through which order conditions of the hybrid methods
for direct integration of special third order ODEs are derived.

In this research, we develop a continuous hybrid liner multistep method (HLMM) for direct
solution of BVPs without reducing the problem to a lower order system or to an IVP equivalent.
The proposed HLMM is zero stable, consistent and more accurate than the existing one.
Experimental results confirm the superiority of the new schemes over the existing methods.
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2. Development of the Method
Collocation solutions are desirable from practical and theoretical considerations and their
advantages are now creating growing interest in continuous integration algorithms for numerical
solution of ODEs. In particular, collocation solutions of the ODEs by their nature are continuous.

In the spirit of Onumanyi et al. [5] and Mohammed [6] we consider briefly the derivation
of the continuous formula by the multistep collocation using constant mesh spacing h and give
explicit representation for the coefficients.

The values of k and m are arbitrary except for collocation at the mesh points, where
0 < m ≤ k + 1.

Let yn+j be approximations to y(xn+j) where yn+j = y(xn+j), j = 0, 1, . . . , k, then a k-step
multistep collocation formula with m collocation points is constructed as follows:

y(xn+k) =
r−1∑
j=0

ᾱjyn+j = h3
m−1∑
j=0

β̄jf(x̄j , y(x̄j)) + h3βηf(xη, y(xη))

where ᾱj , j = 0, 1, . . . , r−1, β̄j , j = 0, 1, . . . ,m−1, and βη, η ∈ R are unknown constants of the
discrete scheme. To obtain a continuous form of Eq. (2) we find the polynomial y(x) of degree
p = r +m− 1, r > 0, m > 0 of the form

y(x) =
r−1∑
j=0

ᾱj(x)yn+j + h3
m−1∑
j=0

β̄j(x)f(x̄j , y(x̄j)) + h3βη(x)f(xη, y(xη)), (2)

such that it satisfies the conditions

ᾱjy(xn+j) = ᾱjyn+j , j = 0, 1, . . . , r − 1,

β̄jy
′′′(xj) = β̄jf(x̄j , y(x̄j)), j = 0, 1, . . . ,m− 1,

where αj(x) and βj(x) are assumed polynomials of the form

αj(x) =

r+m−1∑
i=0

αj,i+1x
i, h3βj(x) =

r+m−1∑
i=0

βj,i+1x
i.

Points xn+j in Eq. (2) are r arbitrarily chosen interpolation points taken from the range
{xn, . . . , xn+k−1}, 0 < r ≤ k, and the collocation points x̄j , j = 0, 1, . . . ,m − 1 belongs to the
extended set Q = {xn, . . . , xn+k}

⋃
{xn+k−1, xn+k}.

From the interpolation conditions and the expression for y(x) in Eq. (2) the following
conditions are imposed on continuous coefficients αj(x) and βj(x):

αj(xm+i) = δij , j = 0, 1, . . . , r − 1, i = 0, 1, . . . , r − 1

h3βj(xn+i) = 0, j = 0, 1, . . . ,m− 1, i = 0, 1, . . . , r − 1

and

α′′′j (x̄n+i) = 0, j = 0, 1, . . . , r − 1, i = 0, 1, . . . ,m− 1

h3βj(xn+i) = δij , j = 0, 1, . . . ,m− 1, i = 0, 1, . . . ,m− 1,

here δij = [i = j] is the Kronecker delta.
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We note that since the general third order ODEs (1) involves the first and second derivatives,
the first and second derivative formulas are

y′(x) =
1

h

r−1∑
j=0

α′j(x)yn+j + h3
k∑
j=0

β′j(x)yn+j + h3β′η(x)fn+η

 ,

y′′(x) =
1

h2

r−1∑
j=0

α′′j (x)yn+j + h3
k∑
j=0

β′′j (x)yn+j + h3β′′η (x)fn+η

 ,

and to obtain additional equations by imposing that

y′(x) = δ(x), y′′(x) = γ(x), y′(a) = δ0, y′′(a) = γ0.

The method of continuous approximation can be expressed as

y(x) =
r−1∑
j=0

αj(x)yn+j + h3
k∑
j=0

βj(x)yn+j + h3βη(x)fn+η. (3)

3. Three-step hybrid method with one off-step collocation point
We use Equation (3) to obtain a three-step HLMM with the following specification: r = 3,
m = 5, η = 8

3 , k = 3, αj(x), βj(x), βη(x) can be expressed as functions of t = x−xn
h . The

HLMMs are usually represented in the form of a single block r-point multistep method [7]

AYm = BYm−1 + h3CFm + h3DFm−1 (4)

where h a fixed mesh size within a block hybrid, A, B, C, and D ∈ R(k+1)×(k+1) are the
coefficient matrices, Ym, Ym−1, Fm and Fm−1 ∈ Rk+1 are vectors of numerical approximation.

The hybrid method can be significantly shown in the form of Equation (4) to give
3 −3 0 1

16
9 −20

9 1 0

−2 1
2 0 0

2 −1 0 0




yn+1

yn+2

yn+ 8
3

yn+3

 =


0 0 0 1
0 0 0 5

9

0 0 0 −3
2

0 0 0 1




yn−3
yn−2
yn−1
yn



+ h3


47
100

23
40 − 81

800
1
20

7
27

203
729 − 25

324
65

2187
1399
4200 − 23

168
783
5600 − 17

2800

−109
120

61
120 − 81

160
79
360




fn+1

fn+2

fn+ 8
3

fn+3

+ h3


0 0 0 1

160

0 0 0 31
8748

0 0 0 − 13
224

0 0 0 − 451
1440




fn−3
fn−2
fn−1
fn

 .

(5)

4. Order and Error Constant of Hybrid Linear Multi-step Method
With specific reference to the works of Fatunla [7] and Lambert [8], the local truncation error
attributed to the conventional form of Equation (3) is defined as the linear difference operator

L[y(x);h] =
k∑
j=0

{
αjy(x+ jh)− h3βjy′′′(x+ jh)

}
− h3βηy′′′(x+ ηh). (6)

Suppose it is assumed that y(x) can be adequately differentiated. It is possible to expand
Equation (6) in the form of Taylor series about the point x to arrive at the expression

L[y(x);h] = C0y(x) + C1y
′(x) + . . .+ Cqh

(q)y(q)(x) + . . .
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where the constant coefficients Cq, q = 0, 1, . . . are given as shown below:

C0 =
k∑
j=0

αj , C1 =
k∑
j=1

jαj , . . . , Cq =
1

q!

k∑
j=1

jqαj−q(q−1)(q−2)

 k∑
j=1

jq−3βj + ηq−3βη

 .

According to the paper by Henrici [9], the method (2) has the order p if

C0 = C1 = . . . = Cp = Cp+1 = 0, Cp+2 = 0, and Cp+3 6= 0.

Therefore, Cp+3 is the error constant. The proposed method (5) has a uniform order p = 5 and
the error constants as

Cp+3 =

(
− 7

7200
,− 85

157464
,−811

18
,−197

14

)>
.

In order to analyze the method (5) for zero stability, we normalize the scheme and write it
as a block method from which we obtain the first characteristic polynomial ρ(R) given by

ρ(R) = det(R ·A(0) −A(1)) = Rk(R− 1).

It is easily shown that method (5) is normalized to give the first characteristic polynomial
ρ(R) given by

ρ(R) = det(R ·A(0) −A(1)) = R3(R− 1)

where A(0) = 14×4 is the identity matrix of dimension 4, A(1) = 14×1 · iT4,4 is the matrix of

dimension 4, i4,4 is the 4-th column of A(0), and roots of the characteristic polynomial ρ(R) are
R = (0, 0, 0, 1). Therefore, the proposed method is zero-stable.

5. Region of Absolute Stability
The boundary locus method is used to obtain the stability region of the main method of
Equation (5). The boundary locus curve is obtained by setting

h̄ = λh =
ρ(z)

σ(z)
, λ > 0, z = exp{i · θ} ∈ C, θ ∈ [0, 2π], (7)

where ρ(z), σ(z) are first and second characteristic polynomial of liner multistep method. The
main method from Equation (5) is written as

yn+3 − 3yn+2 + 3yn+1 − yn = h3
(

1

160
fn +

47

100
fn+1 +

23

40
fn+2 −

81

800
fn+ 8

3
+

1

20
fn+3

)
. (8)

The first and second characteristics polynomials are written as

ρ(z) = z3 − 3z2 + 3z − 1, σ(z) =
1

160
+

47

100
z +

23

40
z2 − 81

800
z

8
3 +

1

20
z3.

Substituting ρ(z) and σ(z) into the Equation (7), the values of h̄ is obtain which is plotted to
produce the region of absolute stability of the method (Figure 1). The stability region for the
method (8) turns out to be the inside part of the complex plane shown in Figure 1, including
the boundary colored by green [11]. From the Figure 1 we found that the interval of absolute
stability is (−1.5, 0).
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Figure 1. Region of absolute stability for the proposed method

Table 1. Numerical Results for Problem 2
x Exact Solution Numerical Solution Error Tirmizi et. al [12]

0.0 -0.01210709 -0.012107056410 3.36×10−8 6.6530×10−5

0.1 -0.01126851 -0.011268451800 5.82×10−8 6.5000×10−5

0.2 -0.00922221 -0.009222146339 6.37×10−8 5.2254×10−5

0.3 -0.00646687 -0.006466811798 5.82×10−8 3.6300×10−5

0.4 -0.00332019 -0.003320153971 3.60×10−8 1.8750×10−5

0.6 0.00332019 0.003320118521 7.15×10−8 1.7340×10−5

0.7 0.00646687 0.006466679335 1.91×10−7 3.4050×10−5

0.8 0.00922221 0.009221906116 3.04×10−7 4.9801×10−5

0.9 0.01126851 0.011268057530 4.52×10−7 6.2020×10−5

1.0 0.01210709 0.012106500950 5.89×10−7 6.3480×10−5

6. Numerical Experiments
The accuracy of the proposed method was implemented for direct solution of BVPs of third
order ODEs of linear and non-linear equations. The implementation of the method was coded
using the Maple Software.

Problems 1. Non-linear Blasius Equation [10]

2y′′′ + yy′′ = 0, y(0) = 0, y′(0) = 0, y′(∞) = 1.

The exact solution does not exist. Comparison numerical solutions using the proposed method
and the fourth order Runge-Kutta (RK) method for the Problem 1 is shown in Fig. 2.

Problems 2. Sandwich Beam Problem [12]

y′′′ − k2y′ + r = 0, y(0.5) = 0, y′(0) = 0, y′(1) = 0.

The proposed schemes for the values k = 1 and r = 5 are relatively more accurate than the
schemes of Tirmizi et al. [12] for Problem 2. Absolute errors are presented in Table 1.
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Figure 2. Comparison numerical solution of proposed method with Runge-Kutta method for
the Problem 1

7. Conclusion
This research describes the development, analysis and implementation of block methods for
solving third order ordinary differential equations directly. The development and/or construction
of class of hybrid linear multi-step methods for direct solution of initial value problems and
boundary value problems arising from third order ODEs have been presented. The derived
schemes which are of block form were analyzed and applied to some selected and standard
problems from literature.
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