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Abstract: A new simple electrochemical immunosensor approach for the determination of antibodies
to tick-borne encephalitis virus (TBEV) in immunological products was developed and tested.
The assay is performed by detecting the silver reduction signal in the bioconjugates with antibodies
(Ab@AgNP). Here, signal is read by cathodic linear sweep voltammetry (CLSV) through the detection
of silver chloride reduction on a gold–carbon composite electrode (GCCE). Covalent immobilization
of the antigen on the electrode surface was performed after thiolation and glutarization of the
GCCE. Specific attention has been paid to the selection of conditions for stabilizing both the silver
nanoparticles and their Ab@AgNP. A simple flocculation test with NaCl was used to select the
concentration of antibodies, and the additional stabilizer bovine serum albumin (BSA) was used for
Ab@AgNP preparation. The antibodies to TBEV were quantified in the range from 50 IU·mL−1 to
1600 IU·mL−1, with a detection limit of 50 IU·mL−1. The coefficient of determination (r2) is 0.989.
The electrochemical immunosensor was successfully applied to check the quality of immunological
products containing IgG antibodies to TBEV. The present work paves the path for a novel method for
monitoring TBEV in biological fluids.

Keywords: Bioconjugates; silver nanoparticles; antibodies; tick-borne encephalitis virus;
cathodic linear sweep voltammetry (CLSV); gold–carbon composite electrode (GCCE);
electrochemical immunosensor

1. Introduction

Tick-borne encephalitis virus (TBEV) is one of the endemic flaviviruses in Russia, which can
cause serious infections in humans that may result in encephalitis/meningoencephalitis. Among the
flaviviruses, TBEV has one of the highest impacts as a human pathogen. Each year, up to 10,000
human cases are reported in Russia [1]. TBEV is a widespread zoonotic virus infection characterized
by fever and brain grey matter damage (encephalitis) and/or damage to meninges (meningitis and
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meningoencephalitis). The disease may cause persistent neurological and psychiatric damage with
lethal outcome [2]. After TBEV infection, specific cellular and humoral responses are developed,
and as a result, the production of antibodies to this pathogen starts. The most frequently used
protective treatment for tick-borne encephalitis (TBE) within 96 h after a tick bite is the usage of the
immunoglobulins against TBEV (passive immunization) [3,4]. The amount of antibody product is
normalized in relation to the phase of the disease and the age of the person. Therefore, it is important
to monitor immunological products containing antibodies to TBEV that are used as post-exposure
prophylaxis after a tick bite. For the successful diagnosis of TBE, detection of antibodies to this
pathogen in human blood can be preferably used. Nowadays, enzyme-linked immunosorbent assays
(ELISAs) are the most frequently used methods of choice for this purpose (while nucleic acid tests are
most frequently applied to detect TBE viral RNA in ticks) [5]. Each ELISA kit includes a conjugate
based on antibodies and marker enzymes. The procedure for conjugates preparation is multistage
and complex, which leads to a significant cost of diagnostic kits. The significant loss of enzyme and
immunoglobulins activity is possible (from 30 to 50%) in the process of their covalent crosslinking.
Furthermore, marker enzymes are stored only at low temperatures or in preservative solutions, which
leads to the need for periodic evaluation of their activity [6].

Electrochemical immunosensors utilizing inexpensive and more stable colloids of metal
nanoparticles (NPs) for the labelling of immunoreagents can overcome the previously described
disadvantages of ELISA and can thus be used as a suitable alternative. Recent publications confirm
that there is an increased interest in the development of electrochemical immunological methods for
TBE detection [7–13]. Table 1 summarizes types of electrodes, modifiers, and electrochemical labels
applied for TBE determination.

Table 1. Survey of electrochemical methods for determination of tick-borne encephalitis (TBE).

Electrode Modifier Method/Label Target
Linearity

Range
(mg·mL−1)

Limit of
Detection
(ng·mL−1)

Ref.

Thick-film
graphite
electrode

Glutaric aldehyde, Nafion, or
nitrocellulose

Anodic stripping
voltammetry/protein A

with Au NPs
Antibodies 10−7

− 10−2 0.1 [7]

Screen-printed
electrode -

Linear sweep
voltammetry/protein A

with Ag NPs
Antibodies 10−7

− 10−2 0.5 [8]

Platinum
electrode

Nano-Au/o-phenylenediamine
polymer film with deposited

Prussian blue
Amperometry/label-free Antigen

a 1.1·10−8 –
1.9·10−6

a 6·10−9 [9]

Gold disc
electrode

l-cysteine + nano-Au and
[Co(bpy)3]3+ Potentiometry/label-free Antigen

a 8.1·10−8
−

3.0·10−6
a 3.5·10−8 [10]

Platinum
microelectrode

Polyaniline/multiwalled carbon
nanotubes

Electrochemical
impedance

spectroscopy/label-free
Antigen 2.0·10−6

−

2.5·10−4 - [11]

Screen-printed
electrode

Carbon nanoparticles modified
with chitosan

Electrochemical
impedance

spectroscopy/label-free
Antigen 1.0·10−6

−

2.0·10−5 0.36 [12]

Screen-printed
electrode

Silanized surface with protein
A/glutaric aldehyde

Electrochemical
impedance

spectroscopy/label-free
Antigen 10−3

− 10−2 750 [13]

a data expressed in PFU mL−1 (plaque-forming units per milliliter).

From Table 1, it can be seen that in the majority of publications based on the determination
of TBEV antigens, impedance electrochemical sensors with a sandwich format without labels were
used [9–13]. In these works, the resistance at the electrode in the presence of redox probes before and
after the formation of the antigen-antibody complex on the electrode surface is measured [9–13]. Most
of them utilize a more complex and time- and labour-demanding technique for electrode modification.
For voltammetric determination of antibodies to TBEV, authors [7,8] proposed the use of colloids of
gold or silver conjugated with protein A. However, information about dispersion, production, and
stabilization of colloids and their bioconjugates is missing in these publications. Moreover, the figures
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of merits of the proposed voltammetric methods are not comparable with the results of the reference
method (ELISA).

In this paper, the bioconjugate of Ag nanoparticles (NPs) and antibodies to TBEV (Ab@AgNP)
have been prepared and reported for the first time. Here, Ag is a direct signalling marker that is
monitored using CLSV that relies on the AgCl reduction. This electrochemical strategy for the detection
of antibodies to TBEV has been employed also for the first time. Specific attention has been paid to the
selection of conditions for the stabilization of both Ag NPs and their Ab@AgNP bioconjugates.

The electrochemical immunosensor utilizing Ab@AgNP bioconjugates for the determination of
antibodies to TBEV has been developed. The comparative detection of IgG antibodies to TBEV in
immunological products was carried out using the developed electrochemical immunosensor and
an ELISA method for the first time. The electrochemical immunosensor presented here represents a
proof of concept for the oncoming development of such progressive diagnostic tools applicable for
biological fluids.

2. Materials and Methods

2.1. The Synthesis and Characterization of Ag NPs

Stable colloid silver was obtained by the method of Mulfinger and Solomon [14]. 5 mL of
1.0 mmol·L−1 AgNO3 were slowly pipetted (1 drop/s) into 15 mL of 2.0 mmol·L−1 NaBH4 at 4 ◦C under
vigorous stirring with a magnetic stirrer. All solutions were dissolved in nanopure water (18 MΩ·cm).
After Ag NP formation has been completed, the solution colour has changed to light yellow. To remove
contaminations, Ag NPs were dialyzed through a dialyzing membrane (pore size of 1 kDa). The Ag
NP solution was stable for 14 days during storage in chemical glassware (dark glass) at 4 ◦C.

After the dialysis has been completed, Ag NP absorption spectra were recorded on the Cary 2000
spectrophotometer (Agilent, Waldbronn, Germany) in 1.0 cm quartz cuvettes in the UV/Vis spectral
region between 300 and 500 nm. The zeta potential of Ag NPs was measured on the Zetasizer Nano ZS
(Malvern Panalytical, Westborough, MA, USA). Transmission electron microscopy (TEM) observations
of the Ag NPs were performed with the GEOL GEM-2100F transmission electron microscope (provided
by TPU Nano-Center, Tomsk, Russia). Calculations of the average size of the Ag NPs were done by
scientific TEM image analysis with the Fiji program and Origin Pro 8.0 (OriginLab, Northampton, MA,
USA). At least ten representative images were taken for each sample. A particle size distribution was
obtained by counting at least 100 particles for each sample.

2.2. Stabilizing Ag NPs with BSA

Bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA, cat. No. A2153) solutions
of different concentrations were added into a set of 2 mL Eppendorf tubes containing 1.9 mL of
post-dialysis colloid Ag NP solutions (10 µg·mL−1). In the reaction volume, BSA concentration was as
follows (µg·mL−1): 2.0, 4.0, 8.0, 16.0, 32.0. One tube without the BSA addition was used as a reference.
The solutions were incubated at 37 ◦C for 1 h [15].

2.3. Flocculation Test

Flocculation test was used to check the stability of Ag NPs modified with BSA. 200 µL of 10% (w/w)
NaCl were added into each tube. The tubes were shaken for 5 min; the fluid was visually monitored
for colour changes and clouding. Afterwards, the tubes were centrifuged for 5 min at 16,000 rpm at
4 ◦C, and the fluid was again visually monitored for colour changes, clouding, or flocculates.

Moreover, after the centrifugation, the spectra of the obtained solutions were recorded in the
UV/Vis spectral region between 300 and 500 nm. The size and morphology of the Ag NPs stabilized by
BSA were determined using TEM.
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2.4. Preparation of Ab@AgNP

The Ag NPs solution (5 mL) obtained and then purified by dialysis was centrifuged at 16,000 rpm
for 10 min at 4 ◦C. The supernatant was removed, and the residue was resuspended in 2 mL of
0.1 mol·L−1 phosphate buffer (pH 7.4) containing antibodies to TBEV (10 µg·mL−1) (ELISA kit,
Vector-Best, Novosibirsk, Russia). After an hour-long incubation and gentle stirring at 37 ◦C, the
sample was centrifuged again with subsequent resuspending of the residue in 2 mL of the 0.1 mol·L−1

phosphate buffer solution with 16 µg·mL−1 of BSA. Ab@AgNP bioconjugate solutions were stored at
4 ◦C. High-molecular proteins are mostly used as stabilizers to prevent the aggregation of Ag NPs
and protect them from the coagulating action of electrolytes [16]. The morphology of Ab@AgNP
bioconjugates was determined using TEM.

Another type of bioconjugates with non-tick-borne monoclonal diagnostic antibodies (Ab1@AgNP,
monoclonal Anti-β-Actin antibody produced in mouse (Sigma-Aldrich, St. Louis, MO, USA, cat. No.
A5441) was obtained to conduct control experiments and to exclude the non-specific binding to the TBEV
antigen. Those bioconjugates were prepared by the same methodology as the Ab@AgNP bioconjugates.

2.5. Production of an Electrochemical Immunosensor Based on Ab@AgNP Bioconjugates

Applying a gold–carbon composite electrode (GCCE) was a prerequisite to making of an
electrochemical immunosensor. To fabricate the substrate electrode, gold nanoparticles were deposited
electrochemically on the surface of a solid carbon composite electrode (CCE, disc-shaped, 3.9 mm in
diameter, manufactured by Tomanalyt LLC, Tomsk, Russia) from a HAuCl4 solution (1000 mg·L−1).
The conditions of the gold nanoparticle deposition on the CCE were as follows: scan rate of 5 mV·s−1,
potential sweep ranging from −0.05 to −0.1 V [17,18]. Then, the electrode has been pre-treated by cyclic
voltammetry in 0.5 mol·L−1 H2SO4 in the potential range between −1.5 and +1.5 V until reproducible
cyclic voltammograms were obtained [19].

Figure 1 depicts the preparation of the electrochemical immunosensor and detection principle
of antibodies. During the preliminary stage, the thiolation of the GCCE surface was performed by
dipping it into 2 mL of a cysteamine solution (0.05 mol·L−1) for 45 min at room temperature. After
rinsing the electrode with deionized water, the electrode was placed into a glutaric aldehyde solution
(2.5%, w/w) for 45 min at room temperature. Glutaric aldehyde was used for covalent protein binding
with the antigen through cysteamine amino groups and antigen protein [19]. Afterwards, the electrode
has been rinsed with the phosphate buffer (pH 7.4) three times and the antigen with a volume of 20 µL
was immobilized on the electrode surface (ELISA kit, Vector-Best, Novosibirsk, Russia). The electrode
incubation time was 1 h at 24–26 ◦C. Then, the electrode has been rinsed with deionized water and
immersed into a BSA solution (1%, w/w) for 30 min in order to block the sites of non-specific binding of
the sensor with other non-specific proteins [20]. The obtained electrode with the immobilized antigen
on the surface has been stored at 4 ◦C for 6 months without any change in performance.

After immobilizing the TBEV antigen on the GCCE surface, the electrode was placed into an
anti-TBE virus ELISA "Vienna" IgG (Vector-Best, Novosibirsk, Russia) antibodies solution for 1 h at 37
◦C. TBEV antibodies concentrations were as follows (IU·mL−1): 50, 100, 400, 800, 1600. Afterwards,
the electrode has been rinsed with the phosphate buffer (pH 7.4) three times and the electrode was
put into the Ab@AgNP bioconjugate solution for 1 h at 37 ◦C. Further investigation was based on the
measurement of electrochemical signal from Ag in Ab@AgNP bioconjugates by cathodic linear sweep
voltammetry (CLSV).

The control experiments included the same steps of producing the electrochemical immunosensor,
with except of antigen immobilization; whole surface was blocked by BSA. Furthermore, Ab1@AgNP
bioconjugates with monoclonal Anti-β-Actin antibody, which are non-specific to the TBEV antigen,
were tested, and no voltammetric signal indicating the AgCl reduction on the GCCE was obtained.
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Figure 1. Scheme of the electrochemical immunosensor preparation and principle of antibody detection.

2.6. Electrochemical Detection of Ag in Ab@AgNP Bioconjugates

For the detection of Ab@AgNP bioconjugates, CLSV was used in a three-electrode cell. The GCCE
was used as the working electrode, an Ag|AgCl (1 mol·L−1 KCl) with a salt bridge to prevent chloride
ions from entering the cell was used as a reference electrode, and a platinum wire electrode was used as
an auxiliary electrode. The TBEV antibodies detection process was based on the preliminary dissolution
of Ag in 1 mL of 1 mol·L−1 HNO3 over 15 min. Then, Ag was detected on the bare GCCE via the
emergence of AgCl in the background electrolyte that contained Cl− ions. Voltammetric measurements
were carried out on the TALab analyzer (Tomanalyt LLC, Tomsk, Russia). The voltammetric parameters
for the AgCl detection via its reduction signal were as follows: supporting electrolyte of 0.15 mol·L−1

HNO3 and 0.01 mol·L−1 KCl, scan rate of 100 mV·s−1, potential range from +0.6 to−0.15 V, accumulation
potential of −0.8 V, accumulation time of 60 s.

2.7. Application of Electrochemical Immunosensor to the Analysis of Immunological Products

The performance of the newly developed immunosensor was tested for the determination of
immunoglobulins against TBEV in two immunological products: human immunoglobulins against
TBEV (FSUC SIC "Microgen", Moscow, Russia) with concentrations not less than 80 and 160 IU·mL−1.
The electrochemical measurements were carried out as described in Section 2.6.

The ELISA (Vector-Best, Novosibirsk, Russia) was selected as a comparative method, where
the detection is based on the indirect assay. The amount of the bound conjugate (horseradish
peroxidase-labelled antibodies to TBEV) with human immunoglobulin against TBEV is determined by
colour reaction using a peroxidase substrate-hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine.
The intensity of staining is proportional to the concentration of antibodies to TBEV in the
immunological product.

3. Results

3.1. Characterization of Ab@AgNP Bioconjugates

At first, spherically shaped Ag NPs (5.3 ± 1.2 nm in size) were synthesized, purified by dialysis,
and characterized by TEM and UV/Vis spectrophotometry (Figure 2). In the UV/Vis absorption spectra
(Figure 2b), the maximum absorption of Ag NPs is in the range of 395–400 nm, which is in accordance
with the average Ag NP size of 5.3 ± 1.2 nm calculated from the TEM observations (Figure 2a) [14].
The zeta potential of the Ag NPs was found to be −42 mV. This large negative zeta potential value
indicates repulsion among the Ag NPs and their dispersion stability.
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Figure 2. TEM-derived Ag nanoparticle (NP) size distribution and TEM image of Ag NPs (inset)
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Afterwards, stable and active Ab@AgNP bioconjugates applicable for electrochemical
immunoassay [16] were prepared in several steps: (i) the empirical optimization of the minimum
concentration of BSA used for additional Ag NP stabilization and for blocking excess Ag NPs to prevent
non-specific binding was carried out; (ii) bioconjugates were produced by the Ag NP incubation with
antibodies to TBEV in the reaction medium containing BSA; (iii) the removal of non-bound antibodies
and BSA from the Ab@AgNP bioconjugate was carried out by centrifuging and resuspending. BSA
was chosen because it is inert, inexpensive, and it can inhibit Ag NP aggregation/agglomeration for
2 months at room temperature.

Antibodies that are specific to the TBEV were taken from ELISA kit (Vector-Best, Novosibirsk,
Russia). Figure 3 shows a TEM image of Ab@AgNP bioconjugates. The stability of Ab@AgNP
bioconjugates was confirmed by an experiment one month later giving the same results.
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3.2. Optimization of BSA Concentration for Stabilization of Ag NPs

In order to empirically optimize the minimum BSA concentration for stabilizing Ag NPs,
flocculation test was used. Different BSA concentrations were added into a series of tubes containing a
Ag NP suspension, and the mixture was incubated as described above. Afterwards, 200 µL of 10%
(w/w) NaCl (destabilizing agent) were added into each tube, and centrifuging was used as an extra
destabilization factor, too. The samples, in which protein concentration was insufficient, exhibited
signs of Ag NP aggregation. The colour of pure colloid silver solution was light yellow. If Ag NPs
were aggregating, the solution colour changed to grey [14]. Figure 4 shows the Ag NP absorption
spectra with different BSA concentrations after the flocculation test with centrifugation.
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Figure 4. UV/Vis absorption spectra of Ag NPs 6 and after NaCl addition 1–5 and subsequent
centrifugation in the presence of different concentrations of BSA: 1—2 µg·mL−1, 2—4 µg·mL−1,
3—8 µg·mL−1, 4—16 µg·mL−1, 5—32 µg·mL−1; optical path length of 1.0 cm, blank—deionized water.

It can be seen that BSA addition shifts the maximum of the UV/Vis absorption spectra of Ag NP to
longer wavelengths (400–405 nm) as compared to the absorption maximum of the Ag NPs without the
BSA (Figure 4, curve 6). It confirms that BSA stabilizes the Ag NPs, probably via several amino acids
present in BSA (e.g., histidine, cysteine, aspartic and glutamic acid), which promote its binding with
metal salts. In particular, moieties of BSA with sulphur-, oxygen-, and nitrogen-bearing groups can
stabilize the nanoparticles. Of these, thiol-bearing cysteine residues are likely to interact with Ag NPs
more strongly via direct chemical bonding, thus providing steric stabilization [21].

The BSA concentration of 2 µg·mL−1 is not high enough to stabilize the Ag NPs with BSA in
the presence of the destabilizing agent (NaCl) even without centrifugation. In Figure 4, curve 1, no
absorption maximum corresponding to a complex of the Ag NPs with BSA can be observed. After the
NaCl addition, the Ag NPs are instantly deposited and the solution becomes fully transparent. The
BSA concentrations of 4 µg·mL−1 (Figure 4, curve 2) and 8 µg·mL−1 (Figure 4, curve 3) appear to be
sufficient to protect the Ag NP colloid from aggregation, but the Ag NPs are still deposited after the
sample centrifugation. The BSA concentrations of 16 µg·mL−1 and 32 µg·mL−1 are high enough to
stabilize the Ag NP colloid even after centrifugation (Figure 4, curves 4–5). Thus, the agreement of
the absorption spectra of the Ag NPs in the presence of BSA in the concentrations of 16 µg·mL−1 and
32 µg·mL−1, as well as the flocculation test with centrifugation, have both demonstrated that the BSA
concentration of 16 µg·mL−1 is high enough to stabilize the Ag NPs for 45 days.

The obtained Ag NPs stabilized by BSA (16 µg·mL−1) were investigated by TEM as shown in
Figure 5. Obviously, BSA is acting as a stabilizer of Ag NPs.
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3.3. Electrochemical Determination of Antibodies to TBEV

The produced Ab@AgNP bioconjugates can be used in diagnostics as an analytical tool for the
determination of antibodies to TBEV. To assess the quality of the produced Ab@AgNP bioconjugates,
an electrochemical immunosensor was developed and CLS voltammograms of Ag in the Ab@AgNP
bioconjugates as a direct signalling marker were recorded. The preparation and characterization of the
electrochemical immunosensor were performed in several steps and is presented in Figure 1.

Figure 6 shows CLS voltammograms of the AgCl reduction on the GCCE when the antigen was
present on the electrochemical immunosensor surface (Figure 6, coloured). Free silver ions were
prepared by dissolving metallic silver in 1 mol·L−1 HNO3, and then AgCl (formed by precipitation
of Ag+ with Cl−) was reduced at the potential of +0.1 V on the bare GCCE, thus generating the
signal [22]. In the case of the comparative experiments without the immobilized antigen on the
surface of the electrochemical immunosensor and with another type of bioconjugates (Ab1@AgNP), no
electrochemical signal indicating the AgCl reduction on the GCCE was detected (Figure 6, black line).
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Figure 6. Cathodic linear sweep voltammograms of AgCl at the gold–carbon composite electrode
(GCCE); black line—without the antigen immobilized on the immunosensor surface; coloured
lines—antigen immobilized on the electrochemical immunosensor with the different concentration of
antibodies (50, 100, 400, 800, 1600 IU·mL−1). Inset plot: corresponding calibration curve (error bars for
n = 5, P = 0.95) in supporting electrolyte of 0.15 mol·L−1 HNO3 and 0.01 mol·L−1 KCl. Scan rate of 100
mV·s−1, Eacc = −0.8 V, tacc = 60 s.

The concentration range of this electrochemical immunosensor is from 50 IU·mL−1 to 1600 IU·mL−1

TBEV antibodies (i.e., the same as corresponding ELISA kit) with a detection limit of 50 IU·mL−1. The
detection limit was calculated as LOD = 3s/b (where s is the standard deviation the signal of blank
sample; b is the slope of the straight section of the calibration curve) [23].

The practical applicability of the newly developed immunosensor was verified by the
determination of the concentration of immunoglobulins against TBEV in two immunological products
to verify the reliability of Ab@AgNP bioconjugates. ELISA (Vector-Best, Novosibirsk, Russia) was used
as a comparative method (Table 2).

The obtained results clearly demonstrate that the detected concentrations of immunoglobulins
against TBEV using the developed electrochemical sensor correspond to the values declared by the
manufacturer and they agree with the results of the traditionally used ELISA method.
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Table 2. Comparative results of measuring concentrations of immunoglobulins against TBEV in
immunological products using existing ELISA and the developed electrochemical method (n = 5,
P = 0.95).

Immunological Product
Declared by

Producer
(IU·mL−1)

Found by ELISA
(IU·mL−1) (C1)

Found by
Electrochemical

Method (IU·mL−1) (C2)
C2/C1 (%)

Human immunoglobulin
against TBEV

(FSUC SIC “Microgen”,
Russia)

Not less than 80 86 ± 4 87 ± 4 101

Human immunoglobulin
against TBEV

(FSUC SIC “Microgen”,
Russia)

Not less than 160 172 ± 8 165 ± 4 96

4. Conclusions

This study has shown that the obtained silver-labelled Ab@AgNP bioconjugates can be used
in voltammetric immunoassays to determine antibodies to TBEV. Colloidal silver, as a label, is less
expensive and more stable than enzyme labels. The procedure for colloidal silver labelling is very
simple and includes the selection of the concentration of antibodies and a blocking reagent (BSA).
Flocculation test with NaCl allows choosing the optimal concentration of antibodies and BSA for
obtaining Ab@AgNP bioconjugates. The selection of the antibody and BSA concentration should be
carried out in relation to the specific experimental conditions, the research objectives associated with
the method of preparation and the dispersion of colloidal silver, the pH of the medium, the presence of
impurities, etc. CLSV has confirmed that the Ab@AgNP bioconjugates can be used as an analytical
tool for the quantitation of antibodies to TBEV in the concentration range from 50 IU·mL−1 to 1600
IU·mL−1, with a detection limit of 50 IU·mL−1. The newly developed electrochemical immunosensor
was successfully applied to check the quality of immunological products containing immunoglobulins
against TBEV.
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