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We propose new interactions of a (massive) vector multiplet with chiral multiplets and (D-type) 
spontaneously broken supersymmetry in four-dimensional N = 1 supergravity, due to the generalized 
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arising in this approach.
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1. Introduction

Local and linearly realized supersymmetry significantly restricts 
the structure of interactions in four-dimensional N = 1 supergrav-
ity and imposes severe constraints on its phenomenological ap-
plications in particle physics and cosmology, including inflationary 
models, in particular [1]. It is, therefore, of interest to extend the 
standard framework of N = 1 supergravity, in order to allow more 
interactions. One of the known and popular ways in this direction 
is the use of non-linear realizations of supersymmetry and con-
strained (nilpotent) superfields [2–6]. This is fully legitimate from 
the viewpoint of considering supergravity as the effective theory 
arising in the low-energy approximation from a more fundamental 
theory, say, superstrings. However, having a linearly realized su-
persymmetry is advantageous because it is preserved by quantum 
corrections. Moreover, the non-linear realizations of supersymme-
try with the constrained superfields can often be reformulated (or 
derived) by using linear (and manifest) realizations of supersym-
metry when the latter is spontaneously broken. In [7] these ideas 
were applied to a derivation of new interactions of chiral super-
fields in N = 1 supergravity, by using the new Fayet–Iliopoulos (FI) 
term proposed in [8]. The original FI term [8] was found to be vi-
olating Kähler–Weyl invariance in the presence of (chiral) matter.

In this Letter we propose more general FI terms for a construc-
tion of new interactions of a (massive) vector superfield with chiral 
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superfields in N = 1 supergravity. Our FI terms include arbitrary 
functions, and the proposed actions are invariant under linearly
realized (manifest) N = 1 local supersymmetry and Kähler–Weyl 
(gauge) transformations. Supersymmetry is spontaneously broken 
by a D-term, while it is the condition for consistency of new inter-
actions. We compute the scalar potentials in our models, and find 
some physical restrictions arising in this approach. The massive 
vector supermultiplet has a real scalar amongst its field compo-
nents, while this scalar is identified with inflaton in some viable 
models of cosmological inflation and dark matter, based on super-
gravity [9–13].

2. A vector multiplet in N = 1 supergravity

In this Section we collect the known facts about an N = 1 vec-
tor multiplet coupled to chiral matter in N = 1 supergravity, by 
using curved superspace of the old-minimal N = 1 supergravity. 
This section serves as our setup and introduces our notation, as in 
Ref. [14], with the spacetime signature (−, +, +, +).1

The standard general Lagrangian reads

L = −3
∫

d4θ Ee−K̂/3 +
(∫

d2�2E
[
W + 1

4
f W αWα

]
+ h.c.

)
,

(1)

in terms of a Kähler potential K (�, �̄, H, H̄, V ) depending upon 
neutral chiral superfields (�, �̄) and charged chiral superfields 
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(H, H̄) coupled to a general vector gauge superfield V , subject to 
the supergauge transformations

H → e−i Z H , �H → ei�Z �H , V → V + i

2
(Z −�Z) , (2)

with the chiral superfield gauge parameter Z . The Kähler poten-
tial is gauge-invariant provided that the gauge superfield V enters 
it via the combination H̄e2V H . The superpotential W(�, H) and 
the kinetic function f (�, H) are gauge-invariant also. The gauge-
invariant vector superfield strength is defined by

Wα = −1

4

(
D̄2 − 8R

)
Dα V , (3)

where R is the chiral curvature superfield. The Wα obeys Bianchi 
identities

D̄.
β

Wα = 0 and D̄ .
α

W̄
.
α ≡ D̄W̄ = DαWα ≡ DW . (4)

The Lagrangian (1) is also invariant under Kähler gauge trans-
formations

K̂ → K̂ + 6� + 6�̄ , W → e−6�W , Wα → e−3�Wα , (5)

with the chiral superfield parameter �, accompanied by Weyl 
transformations of the superspace densities [15],

d4θ E → d4θ Ee2�+2�̄ and d2�2E → d2�2Ee6� . (6)

The gauge superfield V is inert under these transformations, 
whereas the other relevant quantities transform as [15]

Dα V → e�−2�̄Dα V , (D̄2 − 8R) → (D̄2 − 8R)e−4�+2�̄ ,

DW → e−2�−2�̄DW . (7)

The field components of a superfield are identified with the 
leading fields of its superspace covariant derivatives as �| = φ, 
V | = C , etc. In particular, the vector superfield strength compo-
nents are defined by

Wα | = ψα , DW | = −2D and

D(αWβ)

∣∣ = iσ ab
αβ F̂ab = 2i F̂αβ , (8)

where ψa is Majorana fermion (photino), D is the real auxiliary 
field, F̂ab is the (supercovariantized) abelian vector field strength, 
F̂ab = ∂a Vb − ∂b Va + fermionic terms. It also implies

−1

4
D2W 2

∣∣∣∣ = D2 − 2F αβ Fαβ + fermionic terms . (9)

It is worth mentioning that our setup can be consistently ele-
vated to the conformal supergravity framework, either in curved 
superspace or in superconformal tensor calculus [16], by using 
compensators. Actually, we used both approaches to control our 
calculations.

3. Spontaneous SUSY breaking by FI terms

It is possible to add more supersymmetric matter couplings, 
as well as vector multiplet self-couplings, when supersymmetry is 
spontaneously broken by

〈D〉 ≡ ξ �= 0 . (10)

The first such self-coupling (with linearly realised local supersym-
metry) proposed in [8] in the case of a single vector multiplet 
reads
Lξ = 8ξ

∫
d4θ E

W 2 �W 2

D2W 2 �D2 �W 2
DW . (11)

It can be interpreted as a Fayet–Iliopoulos (FI) term [17], because in 
the absence of matter fields it gives rise to a linear term propor-
tional to ξ D in the scalar potential, and hence, to (10) as well. It is 
worth mentioning that the FI term (11) does not require gauging 
the R-symmetry, and is deeply related to non-linear realizations of 
supersymmetry and constrained (nilpotent) superfields [8], unlike 
the standard FI term in supergravity [18,19].

However, in the presence of chiral matter, the FI term (11) is 
not invariant under the Kähler–Weyl transformations, and the fac-
tors D2W 2 or (D2 − 8R†

)W 2 do not transform covariantly. Also, 
the bosonic contribution to the scalar potential (in Einstein frame) 
reads

e−1LF I = −ξeK̂/3 D, (12)

so that the D-equation of motion yields the scalar potential con-
tribution

V F I = 1

2
ξ2e2K̂/3 (13)

that is obviously not Kähler gauge invariant. It was proposed in 
[20] to cure this problem by inserting the factor of e−K̂/3 into the 
FI term (11), in order to compensate the eK̂/3 factor in (12). In 
Einstein frame, it gives rise to the simplest FI term −ξ D with the 
simplest (field-independent) contribution 1

2 ξ2 to the scalar poten-
tial [20]. Though this is enough for a spontaneous SUSY breaking 
and uplifting of an AdS or a Minkowski vacuum, if any, to a dS 
vacuum, it is not enough for viable phenomenological applications, 
because it identifies the SUSY breaking scale with the dark energy 
scale (described by the cosmological constant).

We propose to generalize the FI term (11) further, by promot-
ing a FI constant ξ to a Kähler- and gauge-invariant “superfield-
dependent” FI coupling ξ ′ and inserting the “compensating” pow-
ers of eK̂ (in part, forming the invariant combination (D2 −
8R†)W 2e2K̂/3) as follows2:

L1 = 8
∫

d4θ E
W 2 �W 2[

(D2 − 8R†)W 2e2K̂/3
][

(D̄2 − 8R) �W 2e2K̂/3
]

× (DW )eK̂ ξ ′
1(�, �̄, H, H̄, V ) . (14)

It is convenient to extract from ξ ′
1(�, �̄, H, H̄, V ) its (constant) 

vacuum expectation value,

ξ ′
1(�, �̄, H, H̄, V ) = ξ1 + U1(�, �̄, H, H̄, V ) with

〈U1〉 = 0 and ξ1 �= 0 . (15)

Different FI terms were proposed in [21]. We select the simplest 
one of them, having the form

2 In the superconformal approach [8], this corresponds to

L̃1 = − [
R (V )D

(
ξ1 + U1(�, �̄, H, H̄, V )

)]
D

with

R= (S0 S̄0e−K̂/3)−3 (λ̄P Rλ)(λ̄P Lλ)

T
(

λP R λ

(S0 S̄0e−K̂/3)2

)
T̄

(
λP Lλ

(S0 S̄0e−K̂/3)2

) .
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L2 = 8
∫

d4θ E
W 2 �W 2

(DW )2(�D �W )2

× (DW )e−K̂/3 (
ξ2 + U2(�, �̄, H, H̄, V )

)
, (16)

where we have inserted the factor of e−K̂/3, in order to maintain 
the Kähler–Weyl invariance, and have added an invariant function 
U2(�, �̄, H, H̄, V ) to the FI constant ξ2.3

4. Scalar potential and kinetic terms

In this Section we add one of the generalized FI terms (14) or 
(16) to the standard Lagrangian (1), and investigate the resulting 
new supergravity theory in components.4

As regards the D-type scalar potential VD , the D-dependent 
contributions to the Lagrangian are given by a sum of the stan-
dard quadratic term and a linear term only. We find (in Einstein 
frame, with a single H)

VD = 1

2
(Re f )−1

(
ξ + U − 1

2
K̂ V

)2

(17)

for each of the FI terms (14) and (16), where we have introduced 
the notation K̂ V = ∂ K̂

∂V

∣∣∣. This extends the old result [22] to the case 
of a single massive vector multiplet in the presence of chiral mat-
ter superfields with a generalized FI term.

Equation (17) can be further generalized to the case of several 
charged chiral superfields Hm with the leading field components 
hm , when the Kähler potential K̂ allows Killing vectors km , and the 
superpotential W has the property

km ∂W
∂ Hm

= −rW. (18)

This is the case when, for example, the superpotential transforms 
under the gauge symmetry as W → We−iξ� , and the chiral su-
perfields transform as H → He−i� , while its simplest realization is 
W ∝ Hξ —then we have r = iξ , where ξ is the FI constant. Under 
these conditions, the scalar potential is again given by (17) after a 
substitution of − 1

2 K̂ V by the moment map P defined by

P = i(km∂m K̂ − r) (19)

that is both gauge- and Kähler-invariant. It is worth noticing that 
r �= 0 is also relevant in the case of the gauged R-symmetry by the 
use of the gauge superfield V .

We also find that in the case of FI term (14), there are no purely 
bosonic interactions depending upon Fμν from the FI term alone. 
However, in addition to the condition (10), its fermionic terms 
are well defined only if their denominators do not hit singularities
when either (F −)2 or (F +)2 approach 〈D〉2 = ξ2.5 This observation 
put the leverage from above on possible values of the electric field 
component of Fμν as

1

2
�E2 < ξ2 . (20)

3 Its superconformal form reads

L̃2 = − 1

4

[
S0e−K̂/3 S̄0

(λ̄P Lλ)(λP R λ̄)

((V )D )3

(
ξ2 + U2(�, �̄, H, H̄, V )

)]
D

.

4 It is also possible to add both FI terms. However, this does not add new quali-
tative features.

5 We define the (anti)self-dual tensors as F ±
μν = 1

2 (Fμν ± F̃μν), F ±
μν = (F ∓

μν)∗ and 
F̃ μν = − i

2 εμνρσ Fρσ .
In the case of FI term (16), the factors (D2 − (F ±)2) do not 
appear in denominators of the fermionic terms, but arise in the 
numerator of the bosonic terms as follows:

e−1LFI−bos. = −ξ ′
2

1

D3

(
D2 − F̂ − · F̂ −)(

D2 − F̂ + · F̂ +)
, (21)

where we have

ξ ′
2(φ, φ̄,h, h̄, C) = ξ2 + U2(φ, φ̄,h, h̄, C) , (22)

and the covariant field strength F̂ can be found in eq. (17.1) of 
Ref. [16].

Equation (21) contributes to the kinetic (quadratic in F ) bosonic 
terms as

e−1LFI−bos. = − ξ ′
2

D3

(
D2 − 1

4

(
F · F + F̃ · F̃

))2

= −ξ ′
2 D + ξ ′

2

2D

(
F · F + F̃ · F̃

)
+O(F 4) . (23)

Having restricted ourselves to the quadratic terms with respect to 
Fμν and neglecting the higher order terms in the total Lagrangian, 
we arrive at

e−1L = 1

2
(Re f )D2 − (P + ξ ′

2)D + ξ ′
2

D
F · F

− 1

4
(Re f )F · F + 1

8
(Im f )εμνρσ Fμν Fρσ , (24)

where we have used the identity F̃ · F̃ = F · F .
In order to solve the algebraic equation of motion for D , having 

the form

−(P + ξ ′
2) + (Re f )D − ξ ′

2

D2
F · F = 0, (25)

we search for its solution as

〈D〉 = D0 + Y (φ, φ̄,h, h̄)F · F (26)

and find

D0 = 1

Re f

(
P + ξ ′

2

)
, Y = ξ ′

2
Re f

(P + ξ ′
2)

2
. (27)

The bosonic contribution to the Lagrangian under investigation 
thus reads

e−1L =
(

−1

4
+ ξ ′

2

P + ξ ′
2

)
(Re f )Fμν F μν − VD (28)

with the scalar potential

VD = 1

2

1

Re f

(
P + ξ ′

2

)2
. (29)

The kinetic term of Fμν has the physical sign (no ghosts) when

ξ ′
2

P + ξ ′
2

<
1

4
. (30)

This condition is violated when either P > 3ξ ′
2 (provided P + ξ ′

2 >

0) or P < 3ξ ′
2 (provided P + ξ ′

2 < 0), as well as when P = 0, and 
thus excludes the FI term (16) in all these cases. However, this re-
striction can be easily removed by using a superpotential that leads 
to non-vanishing vacuum expectation values of physical scalars of 
the chiral superfields contributing to supersymmetry breaking. 6

6 When P = 0, adding both FI terms (14) and (16) obeys the no-ghost condition 
provided that ξ2/(ξ2 + ξ1) < 1/4.
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5. Conclusion

Our new FI terms (14) and (16) fully respect the symmetries 
of the original action (1), such as local supersymmetry, the gauge 
invariance and the Kähler–Weyl invariance, while all of these sym-
metries are manifest. They also include new arbitrary functions 
that appear in the scalar potential too. The FI term (16) is appar-
ently simpler than (14).

The total scalar potential in the theory (1) is a sum of the 
D-type and F -type terms,

Vtot. = VD + VF , (31)

where V F is given by the standard expression [23]

VF = eK̂
[

D ĀW̄ g ĀB D BW − 3W̄W
]

(32)

in terms of the derivatives D AW = WA + K̂ AW and the inverse 
Kähler metric g ĀB , where the superfield subscripts denote the 
derivatives with respect to chiral superfields �A . In [7], the gen-
eralized term similar to (but different from) (14) with an arbitrary 
function U3(�̄, �) inside was introduced for the chiral superfields 
� by using their Kähler potential K instead of V in the definition 
of the spinor chiral superfield (3). The net effect on the F -type 
scalar potential of the chiral superfields is a shift

VF → VF + U3 (33)

that results in a totally arbitrary function in the place of VF — it 
was dubbed as the “liberated supergravity” in [7]. In the case of 
the D-type “liberated supergravity” studied here, the liberation by 
the generalized FI terms appears to be limited: though the scalar 
potential (17) also includes an arbitrary function U at our disposal, 
it is non-negative for any choice of U , being given by an arbitrary 
real function squared.
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