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Abstract: The paper focuses on problem of development of autonomous power-supply 

systems based on micro hydropower plants, which are using small watercourse power. The 

design and development of such systems is influenced by a number of conflicting objectives. 

The power source has to generate ac voltage with steady-state magnitude and frequency 

and, at the same time, it has to be fairly simple and inexpensive. One of the  future-proof 

designs that provides fulfillment of the above mentioned requirements is a gearless micro 

hydropower plant with a combined impeller of axial-flow turbine and an electric arc-shape 

inductor generator. The authors have identified how geometrical parameters of the arc-

shape inductor generator influences the machine operation factors. In addition, they have 

found that the air gap impacts the ripple factor significantly. Finally the paper shows 

functional dependence of the slot chamfer factor on chamfer angle, which simplifies the 

problem of choosing reasonable, in terms of efficiency, design parameters of the generator 

for the micro hydropower plant 

Keywords: micro hydropower plant; arc-shape inductor generator; form factor; design 

solutions; parameter optimization; ripple factor; chamfer angle 

1 Introduction 

During the 18th, 19th and the first half of the 20th Century, water wheels were 

important hydraulic energy converters. It is estimated that in England 25,000-

30,000 wheels were in operation around 1850; in Germany 33,500 water wheels 

were recorded as late as 1925. Today, only very few water wheels are still in use. 
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Low power hydropower is seldom exploited since cost-effective energy converters 

for these conditions are not available [1]. Design of autonomous power-supply 

systems for lowland rivers with small watercourse power is carried out by solving 

the whole range of conflicting problems. The power source has to generate ac 

voltage with steady-state magnitude and frequency and, at the same time, it has to 

be fairly simple and inexpensive. One of future-proof designs that meets the 

above-mentioned requirements is gearless micro hydropower plant with combined 

impeller of axial-flow turbine and electric arc-shape inductor generator [1]. An 

advantage of propeller-type axial flow turbines is maximal specific speed for low 

heads, which allows for the development of a  gearless micro hydropower plant. 

Hydroturbine in a river with low flow rate is placed on floats in order to be able to 

adjust the depth of the impeller immersion into water, so it does not have negative 

impact on the environment, including on spawning rivers. Thereby, the problem of 

designing electric power supply systems based on gearless micro hydropower 

plants for lowland rivers is topical [2]. 

Simplified design of hydroturbine in lowland river is shown in Fig. 1. 

 

Figure 1 

Hydroturbine for lowland river 
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Simulation of such a complex technical object as a micro hydropower plant is 

carried out based on generally accepted assumptions. The simulation outcomes 

should indicate characteristics of efficiency and other parameters of the device 

performance quality. Initial parameters that determine all the simulation factors 

are the turbine diameter, blade angle, water course velocity [3].  

Simulation model studies have shown the main relationships of the design 

parameters on parameters of the water course. Functions shown in Fig. 2 compose 

3D characteristic «Power of hydroturbine, PG – water course velocity Vw - turbine 

wheel diameter Dw».  

 

Figure 2 

Functions «Power of hydroturbine – water course velocity - turbine wheel diameter» 

2 Design and Calculation of the Arc-Shape Generator 

The source of electric energy is a generator of special developed design, which 

determines all other parameters of the system. Therefore, it is important to 

predetermine static and dynamic characteristics of the source based on the 

generator in the designing phase [3]. So, we need to develop adequate 
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mathematical model of an electric arc-shape inductor generator of a special 

developed arc-shape design. 

Structure features of the inductor generator with an arc-shape stator influence on 

the form of magnetic field in the air gap demands corresponding analysis to 

determine dependencies of parameters of the generator and the field harmonic 

composition as well as the losses on higher harmonics. 

Magnetic induction distribution in the air gap of synchronous electric arc-shape 

inductor generator with electromagnetic excitation is described by an equation set 

of the stationary magnetic field [4]. One of main approaches to its solution is finite 

element method (FEM). 

Constructively the magnetic core is made of laminations, that is why at the stage 

of mathematical description of the generator magnetic circuit it is convenient to 

use the projections of magnetic permeability on two axes (Y,X) that correspond to 

longitudinal and transversal lines of the iron rolling. 

Considering non-saturated magnetic circuit of the generator, the following 

equations [5] can be used: 

 Magnetic permeability in Y-axis (along rolled sheet), H/m, is determined 

in terms of formula: 

LirY К  , 

where  µir is relative permeability of iron; КL is lamination factor.  

 Magnetic permeability in X-axis (across rolled sheet), H/m, is determined 

in terms of formula: 
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where  ir  is thickness of rolled sheet, m;  

1ir
ё  is value of relative permeability of iron. 

 Magnetizing force in the air gap of the generator is determined by: 


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F , 

where  is value of air gap, m. 

 Magnetic potential difference in the air gap between stator and rotor is 

given by:  

FUm  . 
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Boundary conditions, which are taken into account to solve the field problem, are 

the following [4] : 

- boundary conditions of the first kind on external (upper and lower) 

borders of the simulated area (homogeneous) (see Fig. 3)are given by: 

 
constU Bm  . 

-  boundary conditions of the second kind on external (left and right)   

borders of the simulated area (see Fig. 3) are determined in terms of: 

 

0




B

m

n

U
. 

The last condition is true, when moving away the borders of the area for a 

considerable distance from the field source. 

It is necessary to maintain the continuity condition of magnetic scalar potential 

and equality of normal and tangential derivatives on the interfacial area. In finite 

element method these conditions are met automatically. Computational area of the 

magnetic field studies with boundary conditions is shown in Fig. 3. 

 

Figure 3 

Research area of the magnetic field 



Y. Dementyev et al. Operation of Gearless Micro Hydropower Plant for Small Water-Course 

 – 160 – 

3 Results of Simulation Studies 

3.1 Geometrical Parameters Impact on Machine Performance 

Curves of induction distribution, which have been obtained as a result of 

computational simulation of field in the air gap (the rotor tooth shape is assumed 

to be rectangular), are shown in Fig. 4. 

Simulation of the magnetic field parameters in an electric machine in order to find 

out the qualitative and quantitative evaluation of the induction distribution in the 

air gap also allows to carry out its harmonic analysis. 

 

Figure 4 

Curve of magnetic induction in the air gap (for rectangular rotor tooth shape) 

Variable algorithm of searching the optimum shape of the curve of magnetic 

induction distribution in the air gap allows to define the following: 

- Step-by-step synthesis of the pole shape, as it is shown in Fig. 5; 

- Variation of the pole factor  pÏ b , 

where  bP is pole span, m;  is pole pitch, m. 

Estimation method of shape factor KS of the air gap under stator pole is illustrated 

by Fig. 5 and relationship given by: 

0S
S

K M
S  . 
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Figure 5 

Estimation method of shape factor KS of the air gap under stator pole 

Harmonic composition of the induction distribution curve along the rotor surface 

is determined by the following factors: 

1. Form factor of variable component of the magnetic field of excitation for 

ν- th harmonic is determined in terms of formula: 

m

m
f

B

B
Ê 

  , 

where  Bmν is peak value of the magnetic induction harmonic with 

number ν in the air gap, Т; 

Bm is peak value of magnetic induction in the air gap on the axis 

of the rotor pole, Т. 

2. Utilization factor of the magnetic field is given by [5]: 

2/)0(
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è
 , 

where: А(0)/2 is zero harmonic of the magnetic field in the air gap of the 

machine, Т; 

B1m is peak value of first harmonic of magnetic induction in the 

air gap, Т 

Based on outcomes of computational simulation the influence of the required 

factors on the magnetic induction distribution can be estimated to vary the pole 

shape of the machine. One of the variants of the form factor and the utilization 

factor subject to geometry of the tooth zone is shown as graphs in Fig. 6-7. 
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Figure 6 

Functions of form factor and the utilization factor subject to geometry of the tooth zone 

 

Figure 7 

Diagram of shape variation sequence in order, indicated by numbers, in which the pole sheets are cut 

out 

The simulation model study findings have shown significant influence of the air 

gap value on ripple of the generator magnetic field. Numerical values of ripple 

factor KP, subject to air gap, are shown in table 1. 

 Table 1 

Dependance of ripple factor on air gap 

Air gap, m. Ripple factor Kp 

0.002 1.1 

0.003 1.141 

0.004 1.294 

3.2 Chamfer Factor Influence on the Generator Operation 

Design of the generator, where stator is made up in the form of an arc, has both 

the rotor tooth zone and stator slots with arc-shape geometry. When the rotor teeth 

are located radially, the stator slot axes are in parallel [6]. The axial matching of 
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stator and rotor teeth, which are located in the middle of the arc, should be noted. 

When moving along the rotor tooth axis to the edge of the arc, the slot chamfer 

angle is increasing (Fig. 8, 9). It means that the slot chamfer angle is not a 

constant, as in standard ac machines, but a variable that is altered 0 to its 

maximum value [7]. Hereby the influence of the chamfer on the EMF of the 

armature winding should be studied. 

The study of the dependence of the chamfer factor on fundamental harmonic of 

magnetic induction shown in Fig. 8 allows to obtain localized zone of permissible 

ratios between number of poles and pole arc angle for edge slots of stator for КC ≥ 

0,7. 

 

Figure 8 

Zone of permissible ratios between number of poles and pole arc angle 

EMF qÅ  of a coil group is determined by adding together the EMF vectors 

êÅ  of the coils that are shifted in space for angle 
iñê  (Fig. 10). 
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Figure 9 

Geometrical interpretation of slot chamfer factor 

 

Figure 10 

EMF vector of a coil with slot chamfer 

Expressions to calculate the slot chamfer factor illustrated by Fig. 9, 10 are given 

in terms of formulae below: 
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The achieved dependences of the slot chamfer factor on chamfer angle are shown 

in Fig. 11. Approximating function can be specified by 3-rd order poly-nomial 

determined by: 

3 20,0607 11,996 0,0039 0,7839сi i i iK        . 

 

Figure 11 

Dependences of the slot chamfer factor ciK  on chamfer angle 
i  

Conclusion 

Research shows qualitive and quantative influence of design features of an arc-

shape stator, rotor poles, geometry parameters of the air gap on spectral 

composition and power efficiency of the magnetic field. It allows determining 

optimal range of variation of the slot chamfer and dependence of first harmonic of 

EMF on it. 
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Analysis of the obtained calculated and simulation data shows that the generator 

output parameters (form factor, utilization factor, ripple factor) are influenced by 

geometrical parameters of the machine. In addition, the impact of the the air gap 

on the ripple factor is found to be significant. 

Functional dependence of the slot chamfer factor on chamfer angle has been 

found, which simplifies the problem of choosing reasonable, in terms of 

efficiency, design parameters of the generator of a micro hydropower plant. 
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