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Abstract. In the paper, a metallic FexOy nanopowder was obtained by the electrospark method. 
The used electrospark installation consists of the electrode system, mobility system, system for 
measuring processing parameters (oscilloscope and current sensor, HV voltage divider, 
manovacuum meter), source of current pulses, vacuum system (vacuum pump, gas cylinders 
with working gas, gas routes, gas taps). The specific feature of the installation is the use of a 
power supply circuit of two generators with different voltage levels operating for one 
interelectrode gap. This generator circuit makes it possible to change the treatment parameters 
in wide ranges (pulse duration 10–100 μs, pulse energy 0.1–0.6 J, pulse repetition rate 
0.1–5 kHz). It will enable to choose the optimal ratio between the energy expended and the 
maximum yield of the product, as well as to study the influence of treatment parameters on the 
composition and properties of the resulting powder. The morphology and phase composition of 
the FexOy synthesized metal powder was studied. 

1.  Introduction 
The development of energy-saving, environmentally friendly methods for obtaining nanopowders of 
various substances is an important issue of modern science. This is due both to the practical need to 
create nanomaterials, which ensure their widespread use, and the fundamental need to understand the 
processes that occur in the production and use of nanoparticles by the methods [1, 2]. High-purity, 
weakly agglomerated nanopowders are most widely spread. Such nanopowders are used for catalysis, 
as well as in ecology and medicine [3, 4]. Targeted drug delivery, immobilization of enzymes and drugs, 
cell hyperthermia, medical diagnostics, wastewater treatment are the main areas of application for 
magnetic nanomaterials (for example, iron oxide) [5–11]. The large specific surface area of these 
nanomaterials increases their sorption capacity, and the nanoparticles themselves can be easily captured 
using a gradient magnetic field [12, 13]. 

The literature describes various methods for producing iron oxide nanoparticles, including 
deposition, sol-gel, microemulsion, thermal decomposition, etc. [14–16]. A brief review based on 
scientific works, including data for the last two decades, is presented in [14]. The paper presents the 
methods for producing iron oxide nanoparticles, as well as methods for studying their characteristics. 
The main parameters affecting the structure and size of iron oxide were determined in [17] using the 
sol-gel method (reaction rate, temperature, nature of the precursor and pH), for example, γ-Fe2O3 with 
a particle size of 6 to 15 nm after heat treatment at 673 K. However, there are some disadvantages of 
using the sol-gel method: high-energy consumption due to the use of high temperatures in the synthesis 
process; and the required use of catalysts, which must be removed from the final product at the end of 
the process. 
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The microemulsion method is widely used for the synthesis of catalytic iron oxide, because it allows 
the synthesis of particles with a narrow particle size distribution (from 4 to 15 nm) and a specific surface 
area (315 m2g-1). The disadvantages of this method include the use of expensive surfactants [18]. 

The method of thermal decomposition of iron-containing precursor (ferric (III) acetylacetonate, iron 
nitrosophenylhydroxylamine or iron pentacarbonyl) in octyl ether and oleic or lauric acids followed by 
oxidation, leads to the formation of iron oxide nanoparticles with particle size distribution between 4 
and 16 nm. This preparation method produces monodispersed particles with a narrow size distribution, 
but has a great disadvantage that the resulting particles are always dissolved in non-polar solvents [19]. 
The purpose of this work is the synthesis of nanosized iron oxide using an electrospark method and the 
study of their structural features. 

2.  Experimental setup 
The method of the electrospark method for producing metal nanopowders is based on the use of the 
energy of an electric spark discharge generated between the electrode tool and the sputtered surface. 
When a voltage pulse is applied between the electrode and the sputtered surface, a plasma channel of a 
spark breakdown with an initial diameter of RK ~ 0.1 mm is formed. The current flowing through the 
channel heats it, the pressure in the channel increases, the channel expands. The plasma temperature 
reaches the values of 3.8104 K, the energy flux density is 106–109 Jm-2. The channel plasma energy 
transmitted to the surface leads to a rapid (10-4–10-7 s) local heating, melting, and evaporation of the 
metal. As a result of the action of gas-dynamic forces, “metal vapor” is removed from the zone of action 
of the discharge. Cooling down in the gas of atmospheric pressure, the vapor is condensed on the walls 
of the glass to collect in the form of nanopowder. The scheme of the experiment is shown in figure 1. 

 

Figure 1. The general scheme of the experiment. 

To produce nanopowders, we used two high-voltage generators with current pulse durations of 
100 ns and 10 μs. When using a generator with a pulse duration of 10 μs, the productivity of the process 
of nanopowder formation is 80% higher than when using a generator with a pulse duration of 10 ns. 
However, with long-term use of the generator with a pulse duration of 10 μs, intense erosion of the tool 
electrode occurs, which leads to an increase in the interelectrode gap and, as a consequence, a change 
in the conditions of powder synthesis. 

A series of experiments was carried out. The first series of experiments was carried out on the 
production of two-valence iron (FeO). The samples of cold-rolled steel 08KP were preliminarily 
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prepared to produce nanopowders. The samples were annealed in a muffle furnace at a temperature of 
600°C. As a result, a scale film (FeO) with a thickness of 10–20 μm was formed on the samples, which 
served as the material for the production of the powder. To prevent the formation of another type of 
oxide, the powder was produced in a neutral gas – argon. For the synthesis of nanopowder, a generator 
with a pulse duration of 10 μs was used. 

The second series of experiments on the production of iron oxide powder was carried out in an 
atmosphere of air, the sputtered surface was used as the surface of the samples from cold-rolled steel 
08KP in without preliminary treatment. As a result, a red-black nanopowder with pronounced magnetic 
properties was formed. Samples obtained during the first series of experiments are designated as 
sample 1, in the second series of experiment – sample 2. For the synthesis of nanopowder, a generator 
with a pulse duration of 100 ns was used. 

The morphology of iron-containing nanooxides was studied by transmission electron microscopy 
using a JEOL-II-100 electron microscope (Jeol Ltd., Japan). The crystal structure of the FexOy nanoscale 
powder was studied using the standard X-ray phase analysis method (Shimadzu XRD-7000S X-ray 
diffractometer, Shimadzu, Japan). 

3.  Results and discussion 
Figures 2 and 3 present the photos with characteristic images of the morphology of the resulting iron 
oxide. 

 

a)  b) 

Figure 2. TEM images of nanoscale FexOy obtained in the first series of experiments. 

The particles in samples 1 and 2 are mainly clusters in the form of balls with an average size of 
5–20 nm. Separate round particles with an average particle diameter of 50–150 nm are observed 
(figure 2b). In addition, in sample 1 there are individual round hollow particles, the diameter of which 
does not exceed 100 nm (figure 2a). For sample 2, the morphology of the particles is represented by 
aggregated particles. It is seen that the particles have a spherical or faceted shape. Smaller particles are 
combined in clusters, the size of particles in clusters does not exceed 40 nm (figure 3b). Figure 3a shows 
the formation of a thin layer on the surface of round and large particles. The thickness of the layer did 
not exceed 4 nm. 

In addition to TEM photographs of the synthesized particles, microdiffractograms were taken 
(figure 4 and 5). For sample 1 on microdiffraction patterns, bright reflections characteristic of the 
corresponding iron oxide lattices were observed regardless of the particle morphology. 
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Figure 3. TEM images of nanoscale FexOy obtained in the second series of experiments. 
 

 

Figure 4. TEM images of FexOy sample particles and its 
microdiffraction pattern obtained in the first series of experiments. 

 

 

 

 

Figure 5. TEM images of FexOy sample particles and its microdiffraction 
pattern obtained in the second series of experiments. 
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For sample 2, it was observed that some particles give bright reflexes on the microdifraction pattern. 
This is characteristic of particles whose morphology is represented by a faceted form. But for some 
particles, reflexes were not detected, but a halo was observed, which is responsible for the amorphous 
state, which is also seen on the radiograph as an X-ray amorphous plateau in the region of small angles. 

Figure 6 presents the results of the study of the phase composition of FexOy nanopowders. 

 

Figure 6. X-ray diffraction patterns of the samples FexOy 
(0 – is Fe2O3-gamma, * – is FeO-alfa). 

X-ray phase analysis showed the presence of the crystal lattice of Fe2O3-gamma, FeO-alfa. X-ray 
phase analysis showed the presence of mostly FeO, which coincides with the composition of the initial 
oxide film. 

For the FexOy sample obtained in the first series of experiments, an EDS analysis was performed 
(figure 7). 

Figure 7. The color windows reflecting the elements of sample 1. 

Figure 7 shows that the main elements of iron nanooxide are iron and oxygen. The elemental 
composition of the powder of sample 1 is represented by Fe – 52%, O – 39%, C – 8%, Cr, Mn, and 
others – 1%. The carbon content is much higher than in the target material, which is associated with the 
use of an oily high-pressure vacuum pump for preliminary pumping out of the working chamber. A high 
percentage of iron indicates the presence in the sample of non-oxidized iron, which is most likely in 
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amorphous form. The presence of such elements as Cr, Mn can be explained by the fact that these 
elements are in the target, from which the iron nanooxide was formed. 

4.  Conclusion 
Thus, iron oxide nanopowders were obtained using the electrospark method. Analysis of the powders 
showed that the pulse duration (10 μs and 100 nm) hardly affects the size of the synthesized 
nanoparticles. Depending on the medium (argon, air) in which the powders were synthesized, the 
samples can change color (black, red, red and black), phase composition and oxygen content. The 
average size of the synthesized particles is in the range of 5–20 nm, there are some larger particles, but 
not in large quantities, which average size did not exceed 50–150 nm. Particle morphology is represented 
by both individual circular particles and particles with a faceted shape as well as particles in the form of 
hollow spheres. The phase composition of the samples is represented by two crystal lattices of 
Fe2O3-gamma, FeO-alfa. The content of the amorphous phase in the second sample is higher. For a 
sample synthesized in an air atmosphere, encapsulation is observed. The thickness of the shell does not 
exceed 6 nm. The composition of the shell is probably more oxygenated iron oxide than the core 
material. The synthesized iron oxides will be used as a core for the further production of a composite in 
the form of FexOy@SiO2, FexOy-TiO2, etc. (core-shell) for use in catalysis and medicine. 
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