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1 Introduction

The Ruijsenaars-Schneider models [1] provide interesting examples of integrable many-body

systems in d = 1 whose equations of motion involve particle velocities. They exhibit the

Poincaré symmetries in 1 + 1 dimensions, which involve translations in the temporal and

spatial directions and a boost, and reduce to the Calogero systems [2] in the nonrelativistic

limit [1]. By this reason, the former are conventionally regarded as the relativistic gener-

alizations of the latter.

An important aspect of the extensive studies of the Calogero models over the last two

decades has been the construction of N = 4 supersymmetric extensions [3–6]. Interest in

such systems stems from the fact that some of them are expected to be relevant for a micro-

scopic description of the extreme black holes [7]. Worth mentioning also is that N -extended

supersymmetry in d = 1 exhibits peculiar features which are absent in higher dimensions.

Surprisingly enough, supersymmetric extensions of the relativistic counterparts of the

Calogero models remain almost completely unexplored. An integrable N = 2 supersym-

metric generalization of the quantum trigonometric Ruijsenaars-Schneider model has been

reported in [8] whose eigenfunctions were linked to the Macdonald superpolynomials. Note,

however, that the fermionic variables in [8] and their adjoints obey the non-standard anti-

commutation relations which reduce to the conventional ones in the non-relativistic limit

only.

The goal of this work is to construct N = 2 supersymmetric extensions of the ratio-

nal and hyperbolic Ruijsenaars-Schneider three-body models within the framework of the

Hamiltonian (on-shell) formalism. As is known, the systems admit more than one Hamilto-

nian description [2, 9]. For a supersymmetric extension to be feasible, we suggest to choose

a Hamiltonian each term of which is positive definite.
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The paper is organized as follows. In subsections 2.1, 2.2, and 2.3 we briefly review the

basic properties of the rational and hyperbolic Ruijsenaars-Schneider three-body models

with a particular emphasis on the issue of (super)integrability. An interesting feature of

these systems is that they admit an alternative description in terms of geodesic equations

associated with an affine connection [10]. For the rational model the latter is known to be a

metric connection and the manifold is actually flat [10]. In subsection 2.4. we demonstrate

that the hyperbolic models are linked to non-metric connections. In section 3 for each

bosonic variable we introduce a pair of complex conjugate fermionic partners and build

novel N = 2 supersymmetric rational and hyperbolic Ruijsenaars-Schneider three-body

models. In contrast to the non-relativistic N = 2 Calogero models [11], the supersymmetry

charges involve contributions cubic in the fermionic variables. In the concluding section 4

we discuss possible further developments.

Throughout the paper summation over repeated indices is understood unless otherwise

is stated explicitly.

2 Ruijsenaars-Schneider models

The Ruijsenaars-Schneider models are integrable many-body systems in one dimension

which are described by the equations of motion [1]

ẍi =
∑

j 6=i

ẋiẋjW (xi − xj), (2.1)

where W (x) = 2
x
, 2

sinhx
, or 2 cothx.1 For simplicity of presentation, in what follows we

focus on the three-body problem only and assume x1 < x2 < x3. Note that the models

hold invariant under the temporal and spatial translations. The rational system is also

invariant under independent rescalings of t and xi [9].

2.1 Rational model

The rational Ruijsenaars-Schneider system corresponds to W (x) = 2
x
which is also known

as the goldfish model [9]. The equations of motion follow from the Hamiltonian2

H =
ep1

x12x13
+

ep2

x12x23
+

ep3

x13x23
, (2.2)

where xij = xi − xj and (p1, p2, p3) signify momenta canonically conjugate to (x1, x2, x3).

The Poisson bracket is chosen in the conventional form {xi, pj} = δij .

One of the ways to construct three mutually commuting constants of the motion is to

use the Lax matrix [1, 2] which yields

I1 = H, I2 =
x̃23e

p1

x12x13
+
x̃13e

p2

x12x23
+
x̃12e

p3

x13x23
, I3 =

x2x3e
p1

x12x13
+
x1x3e

p2

x12x23
+
x1x2e

p3

x13x23
, (2.3)

1The so called trigonometric models follow from the hyperbolic systems after the substitution x → ix.

In what follows we disregard them.
2The Hamiltonian formulation (2.2) is not unique [9]. One can verify that multiplying each term in (2.2)

by an arbitrary constant one does not alter the equations of motion. Keeping in mind the forthcoming

construction of an N = 2 supersymmetric extension, we stick to the Hamiltonian each term of which is

positive definite. We also do so for the Hamiltonians in subsection 2.2 and 2.3.
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where x̃ij = xi + xj . These are functionally independent.

The rational model is known to be maximally superintegrable [12]. Since (2.1) is

translation invariant, the total momentum

I0 = p1 + p2 + p3 (2.4)

is conserved. Other constants of the motion are built by considering the elementary mono-

mials

Mp =
∑

i1<···<ip

xi1 . . . xip , {Mp, H} = Ip, (2.5)

where p = 1, . . . , 3, such that MiIj −MjIi are conserved quantities. For the case at hand

it suffices to consider

I4 =
x2x3x̃23e

p1

x12x13
+
x1x3x̃13e

p2

x12x23
+
x1x2x̃12e

p3

x13x23
=M1I3 −M3I1. (2.6)

It is straightforward to verify that Ik, k = 0, . . . , 4, are functionally independent which

implies the three-body problem (2.2) is maximally superintegrable.

2.2 Hyperbolic model I

The first of the Ruijsenaars-Schneider hyperbolic models relies upon W (x) = 2
sinhx

. It is

described by the Hamiltonian

H = ep1 coth
(x12

2

)

coth
(x13

2

)

+ ep2 coth
(x12

2

)

coth
(x23

2

)

+ep3 coth
(x13

2

)

coth
(x23

2

)

= I1, (2.7)

which is chosen such that each term is positive definite (recall x1 < x2 < x3). Like

its rational counterpart (2.2), the system (2.7) is invariant under the spatial translation,

x′i = xi + a, which results in the conservation of the total momentum

I0 = p1 + p2 + p3. (2.8)

The third constant of the motion, which ensures the Liouville integrability, reads

I2 = ep1+p2 coth
(x13

2

)

coth
(x23

2

)

+ ep1+p3 coth
(x12

2

)

coth
(x23

2

)

+ep2+p3 coth
(x12

2

)

coth
(x13

2

)

. (2.9)

One of the ways to obtain (2.9) is to use the Lax matrix [1, 2]. It is readily verified that

(I0, I1, I2) are mutually commuting and functionally independent.

2.3 Hyperbolic model II

The second Ruijsenaars-Schneider hyperbolic model is associated with W (x) = 2 cothx.

We choose the Hamiltonian in the form

H =
ep1

sinhx12 sinhx13
+

ep2

sinhx12 sinhx23
+

ep3

sinhx13 sinhx23
= I1. (2.10)
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Again, in view of x1 < x2 < x3, each term in (2.10) is positive definite. Three mutu-

ally commuting and functionally independent integrals of motion include (2.10) the total

momentum

I0 = p1 + p2 + p3, (2.11)

and

I2 =
ep1+p2

sinhx13 sinhx23
+

ep1+p3

sinhx12 sinhx23
+

ep2+p3

sinhx12 sinhx13
. (2.12)

The simplest way to obtain (2.12) is to use the Lax matrix [1, 2].

2.4 Geodesic interpretation

The Ruijsenaars-Schneider equations of motion (2.1) can be rewritten as the geodesic equa-

tions on a manifold which is parametrized by the local coordinates xi and equipped with

the affine connection (no summation over repeated indices) [10]

Γi
jk = δijwik + δikwij , wik =







−
1

2
W (xi − xk), i 6= k

0 , i = k

(2.13)

For the rational model (2.13) turns out to be a metric connection associated with [10]

gij =
∂Mp

∂xi

∂Mp

∂xj
, (2.14)

where the functions Mp are given in (2.5) with p = 1, . . . , n. Since (2.14) is the Kro-

necker delta in curvilinear coordinates, the transformation x′i = Mi(x) links the rational

Ruijsenaars-Schneider model to a free particle propagating in a flat space.

Let us examine whether the hyperbolic choices of W (x) result in metric connections.

Assuming a metric is non-degenerate and (2.13) can be represented in the conventional form

Γi
jk =

1

2
gip (∂jgpk + ∂kgpj − ∂pgjk) , (2.15)

contracting with gsi, permuting the indices (j, s, k) → (s, k, j), and taking the sum, one

gets a coupled set of partial differential equations

∂jgsk = wjk(gsj − gsk) + wjs(gkj − gks). (2.16)

It turns out that (2.16) leads to a contradiction as it yields a degenerate metric whose all

components are equal to one and the same constant, gij = const. In order to see this, it

suffices to consider three equations belonging to the set (2.16)

∂1g11 = 0, ∂2g11 = 2w12(g11 − g12), ∂1g12 = w12(g11 − g12). (2.17)

Computing the derivative of the second equation with respect to x1 and taking into

account the other two, one gets

(

w′
12 − w2

12

)

(g11 − g12) = 0, (2.18)
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W (x) = 2
x

W (x) = 2
sinhx

W (x) = 2 cothx

λ1 =
e
p1
2√

x12x13
λ1 = e

p1

2

√

coth
(

x12

2

)

coth
(

x13

2

)

λ1 =
e
p1
2√

sinhx12 sinhx13

λ2 =
e
p2
2√

x12x23
λ2 = e

p2

2

√

coth
(

x12

2

)

coth
(

x23

2

)

λ2 =
e
p2
2√

sinhx12 sinhx23

λ3 =
e
p3
2√

x13x23
λ3 = e

p3

2

√

coth
(

x13

2

)

coth
(

x23

2

)

λ3 =
e
p3
2√

sinhx13 sinhx23

Table 1. Functions λi for the Ruijsenaars-Schneider models.

where w′ = dw(x)
dx

. Since for the hyperbolic models
(

w′
12 − w2

12

)

6= 0, one obtains

g11 = g12. (2.19)

By repeatedly using the same argument, one can further demonstrate that all components

of gij are equal to each other. The left hand side of (2.16) then implies gij = const.

Thus, in contrast to the rational model, the hyperbolic Ruijsenaars-Schneider systems

are linked to non-metric connections. While in the former case all components of the

Riemann tensor vanish identically, in the latter case the curvature tensor is non-trivial.

3 N = 2 supersymmetric extension of Ruijsenaars-Schneider models

As was emphasized above, the Hamiltonian formulations for the Ruijsenaars-Schneider

models were chosen so that each term in the Hamiltonian was positive definite. In or-

der to construct N = 2 supersymetric extensions, we first represent the original bosonic

Hamiltonian in the form

HB = λiλi, (3.1)

where the phase space functions λi, i = 1, 2, 3, are given above in table 1. They prove to

obey the quadratic algebra (no summation over repeated indices and i 6= j)

{λi, λj} =
1

4
W (xi − xj)λiλj . (3.2)

Note that this algebra holds invariant under the rescalings λi → αiλi (no sum), where αi

are arbitrary real constants. This transformation links to the arbitrariness in the choice of

the Hamiltonian mentioned above.

Then we introduce the complex fermionic partners ψi, i = 1, 2, 3, for the bosonic

coordinates xi, and impose the canonical brackets

{ψi, ψj} = 0, {ψi, ψ̄j} = δij , {ψ̄i, ψ̄j} = 0, (3.3)

where ψ̄i stands for the complex conjugate of ψi.
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Two supersymmetry charges are chosen in the polynomial form

Q = λiψi + ifijkψiψjψ̄k, Q̄ = λiψ̄i + ifijkψ̄iψ̄jψk, (3.4)

where fijk = −fjik are real functions. The latter are determined from the condition that

the supersymmetry charge is nilpotent {Q,Q} = 0:

{λi, λj}+ 2fijkλk = 0, {λk, fnml}+ 2fknpfpml = 0, {fabc, fmnk} = 0, (3.5)

where the underline/overline mark signifies antisymmetrization of the respective indices.

The Hamiltonian which governs the dynamics of an N = 2 supersymmetric extension

follows from the superalgebra

{Q, Q̄} = −iH, (3.6)

which yields

H = λiλi − 2i(fijk + fkji + fikj)λkψiψ̄j + i{fijl, fmnk}ψiψjψkψ̄lψ̄mψ̄n

−({λi, fklj} − {λl, fijk}+ fijpfklp − 4fpilfpkj)ψiψjψ̄kψ̄l. (3.7)

Comparing (3.2) with the leftmost equation in (3.5), one gets

f121 = −
a

8
W (x1 − x2)λ2, f122 = −

(1− a)

8
W (x1 − x2)λ1,

f131 = −
b

8
W (x1 − x3)λ3, f133 = −

(1− b)

8
W (x1 − x3)λ1,

f232 = −
c

8
W (x2 − x3)λ3, f233 = −

(1− c)

8
W (x2 − x3)λ2, (3.8)

where (a, b, c) are arbitrary real constants, while other components of fijk prove to vanish.

Substituting (3.8) into the second equation in (3.5), one obtains the quadratic algebraic

equations

bc = 0, a(1− c) = 0, (1− a)(1− b) = 0, (3.9)

which imply that two options are available

a = 1, b = 0, c = 1, (3.10)

or

a = 0, b = 1, c = 0. (3.11)

It is straightforward to verify that the second possibility is linked to the first by relabelling

x1 ↔ x3, p1 ↔ p3, ψ1 ↔ ψ3, ψ̄1 ↔ ψ̄3, (3.12)

which gives λ1 ↔ λ3, λ2 ↔ λ2. For the three-body problem the rightmost equation in (3.5)

holds automatically.

Thus, N = 2 supersymmetric extensions of the Ruijsenaars-Schneider models build

upon λi, which are exposed above in table 1, and the structure functions

f121 = −
1

8
W (x1 − x2)λ2, f133 = −

1

8
W (x1 − x3)λ1, f232 = −

1

8
W (x2 − x3)λ3.

(3.13)
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Interestingly enough, in contrast to N = 2 supersymmetric extensions of the non-

relativistic Calogero model [11], the supersymmetry charges involve contributions cubic

in the fermionic variables. Thus, provided one is focused on a Hamiltonian each term of

which is positive definite, the N = 2 supersymmetric extension is essentially unique.

It proves instructive to expose the (complex) supersymmetry charge and the Hamilto-

nian in terms of λi and the prepotential W (x)

Q = λ1ψ1 + λ2ψ2 + λ3ψ3 −
i

4
W (x1 − x2)λ2ψ1ψ2ψ̄1 −

i

4
W (x1 − x3)λ1ψ1ψ3ψ̄3

−
i

4
W (x2 − x3)λ3ψ2ψ3ψ̄2,

H = λ21 + λ22 + λ23 +
i

2
W (x1 − x2)λ1λ2(ψ1ψ̄2 − ψ2ψ̄1) +

i

2
W (x1 − x3)λ1λ3(ψ1ψ̄3 − ψ3ψ̄1)

+
i

2
W (x2 − x3)λ2λ3(ψ2ψ̄3 − ψ3ψ̄2)−

1

4
W ′(x1 − x2)λ

2
2ψ1ψ2ψ̄1ψ̄2

−
1

4
W ′(x1 − x3)λ

2
1ψ1ψ3ψ̄1ψ̄3 −

1

4
W ′(x2 − x3)λ

2
3ψ2ψ3ψ̄2ψ̄3

+
1

8
W (x1 − x2)W (x1 − x3)λ1λ2ψ3ψ̄3(ψ1ψ̄2 + ψ2ψ̄1)

+
1

8
W (x1 − x3)W (x2 − x3)λ1λ3ψ2ψ̄2(ψ1ψ̄3 + ψ3ψ̄1)

−
1

8
W (x1 − x2)W (x2 − x3)λ2λ3ψ1ψ̄1(ψ2ψ̄3 + ψ3ψ̄2), (3.14)

where W ′(x) = dW (x)
dx

. Curiously enough, for the three-body models the six-fermion term

present in (3.7) proves to be zero. We failed to demonstrate that it also vanishes for n > 3

on account of eqs. (3.5).

4 Conclusion

The construction of the N = 2 supersymmetric rational and hyperbolic Ruijsenaars-

Schneider three-body models reported in this work can be continued in several directions.

First of all, it is worth extending the present analysis to the case of arbitrary number

of particles. For the rational model an optimal strategy might be to switch to the geodesic

formulation associated with the metric (2.14). One can first implement a coordinate trans-

formation which brings the model to the free form, supersymmetrize the free system, and

then apply the inverse transformation. A canonical transformation linking such a system

to (2.2) for n = 3 is of interest. For the hyperbolic models the construction may break

beyond n = 3. For the case of n particles the structure functions fijk involve nC2
n com-

ponents, where Ck
m are the binomial coefficients. The first, second, and third equations

in (3.5) yield C2
n, nC

3
n, and C

2
nC

4
n conditions, respectively. For n > 3 the set of restrictions

is overcomplete. In particular, some of them may turn out to be incompatible with the

form of the prepotential W (x) chosen.

Secondly, it is interesting to construct an off-shell superfield Lagrangian formulation

for the on-shell component Hamiltonian (3.7) and to study its peculiarities.

Thirdly, an N = 4 supersymmetric generalization is an intriguing open problem. The

key point is to reveal an analogue of the Witten-Dijkgraaf-Verlinde-Verlinde equation [4].

As was mentioned above, the hyperbolic Ruijsenaars-Schneider models can be described

– 7 –
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in terms of the geodesic equations associated with a non-metric connection. The descrip-

tion of many-body mechanics with extended supersymmetry on such spacetimes in purely

geometric terms is a challenge.

Finally, it would be interesting to understand whether supersymmetric extensions of

the Ruijsenaars-Schneider models may be relevant for the study of the space of vacua of

supersymmetric gauge theories (see the discussion in [13] and references therein).
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