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The (2 + 1)-dimensional Maxwell–Chern–Simons gauge model consisting of two complex scalar fields 
interacting through a common Abelian gauge field is considered. It is shown that the model has a solution 
that describes a soliton system consisting of vortex and Q-ball constituents. This two-dimensional soliton 
system possesses a quantized magnetic flux and a quantized electric charge. Moreover, the soliton system 
has a nonzero angular momentum. Properties of this vortex-Q-ball system are investigated by analytical 
and numerical methods. It is found that the system combines properties of a vortex and a Q-ball.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Topological solitons of (2 + 1)-dimensional field models play 
an important role in various areas of field theory, physics of con-
densed state, cosmology, and hydrodynamics. Among them, we 
should first mention vortices of the effective theory of supercon-
ductivity [1], vortices of the (2 + 1)-dimensional Abelian Higgs 
model [2], and lumps of the (2 + 1)-dimensional nonlinear O (3)

sigma model [3].
In contrast to the (3 + 1)-dimensional case, electrically charged 

solitons do not exist in the (2 + 1)-dimensional Maxwell elec-
trodynamics for a fairly straightforward reason: the electric field 
goes like 1/r, so the electric field’s energy diverges logarithmi-
cally. In (2 + 1) dimensions, however, the dynamics of gauge 
field may be governed not only by the Maxwell term but also 
by the Chern–Simons term [4–6]. In the presence of the Chern–
Simons term, a gauge field becomes topologically massive, thus 
making possible the existence of two-dimensional electrically 
charged solitons. These solitons exist both in the Maxwell–Chern–
Simons models [7–9] and in the Chern–Simons models [10–14]
and can be both topological and nontopological. Topological soli-
tons are electrically charged vortices, whereas nontopological ones 
are two-dimensional electrically charged spinning (possessing an 
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angular momentum) Q-balls. The numerical research of such a 
two-dimensional Q-ball has been performed in [15]. The three-
dimensional counterparts of these Q-balls have been described 
in [16,17]. More recently, the influence of the Chern–Simons 
term on electrically charged and spinning solitons of several 
(2 + 1)-dimensional Abelian gauge models has been studied in 
[18].

In this Letter a two-dimensional soliton system in the Maxwell–
Chern–Simons gauge model is considered. As well as in the 
Maxwell gauge model [19], the soliton system consists of a vortex 
and a Q-ball interacting through a common Abelian gauge field. 
This vortex-Q-ball system possesses a radial electric field, carries 
a quantized magnetic flux, and has a nonzero angular momentum, 
but in contrast to [19], it also has a quantized electric charge. It is 
shown that the vortex-Q-ball system combines properties of topo-
logical and nontopological solitons.

2. Lagrangian and field equations of the model

The Lagrangian density of the model is

L = −1

4
Fμν F μν + μ

4
ερστ Fρσ Aτ

+ (
Dμφ

)∗
Dμφ − V (|φ|)

+ (
Dμχ

)∗
Dμχ − U (|χ |) , (1)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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where the complex scalar fields φ and χ are minimally coupled to 
the Abelian gauge field Aμ through the covariant derivatives:

Dμφ = ∂μφ + ie Aμφ, Dμχ = ∂μχ + iq Aμχ. (2)

The self-interaction potentials used in this paper are the same as 
those used in [19]:

V (|φ|) = λ

2

(
φ∗φ − v2

)2
,

U (|χ |) = m2χ∗χ − g
(
χ∗χ

)2 + h
(
χ∗χ

)3
. (3)

In Eq. (3), λ, g , and h are the positive self-interaction constants, m
is the mass of the scalar χ -particle, and v is the vacuum average 
of the complex scalar field φ. We suppose that the parameters m, 
g , and h satisfy the condition

g2

4m2
< h <

g2

3m2
. (4)

In this case, the potential U (|χ |) has the two minima: the global 
minimum at χ = 0 and a local one at some nonzero |χ |.

The model’s action S = ∫
Ld3x is invariant under the local 

gauge transformations:

φ (x) → φ′ (x) = exp (−ie�(x))φ (x) ,

χ (x) → χ ′ (x) = exp (−iq�(x))χ (x) ,

Aμ (x) → A′
μ (x) = Aμ (x) + ∂μ�(x) (5)

if the local gauge parameter � (x) decreases rapidly at infinity. Be-
cause of neutrality of the Abelian gauge field Aμ , the Lagrangian 
density (1) is also invariant under the two independent global 
gauge transformations:

φ (x) → φ′ (x) = exp (−iα)φ (x) ,

χ (x) → χ ′ (x) = exp (−iβ)χ (x) . (6)

This invariance leads to the two Noether currents:

jμφ = i
[
φ∗Dμφ − (

Dμφ
)∗

φ
]
,

jμχ = i
[
χ∗Dμχ − (

Dμχ
)∗

χ
]
. (7)

Under the discrete transformations C , P , and T , the Chern–Simons 
term LC S = μερστ Fρσ Aτ /4 behaves as follows:

L(C)
CS = LCS, L(P )

CS = −LCS, L(T )
CS = −LCS. (8)

It follows from Eq. (8) that the Chern–Simons term breaks the P , 
C P , and T -invariance of the model’s Lagrangian.

The field equations of the model have the form:

∂μF μν + μ∗F ν = jν, (9)

DμDμφ + λ
(
φ∗φ − v2

)
φ = 0, (10)

DμDμχ +
(

m2 − 2g
(
χ∗χ

) + 3h
(
χ∗χ

)2
)
χ = 0, (11)

where the dual field strength ∗F ν = εναβ Fαβ/2, and the electro-
magnetic current jν is expressed in terms of the Noether currents:

jν = ejνφ + qjνχ . (12)

Integrating the left and right hand sides of Eq. (9) with the in-
dex ν = 0 over the spatial plane, we obtain an important relation 
between the electric charge and the magnetic flux:

Q = e Q φ + qQ χ = −μ�, (13)
where Q φ = ∫
j0
φd2x and Q χ = ∫

j0
χd2x are the conserved Noether 

charges.
The symmetric energy-momentum tensor of the model and the 

corresponding expression for the energy density are written as:

Tμν = − Fμλ F λ
ν + 1

4
gμν Fλρ F λρ

+ (
Dμφ

)∗
Dνφ + (Dνφ)∗ Dμφ

− gμν

((
Dμφ

)∗
Dμφ − V (|φ|))

+ (
Dμχ

)∗
Dνχ + (Dνχ)∗ Dμχ

− gμν

((
Dμχ

)∗
Dμχ − U (|χ |)) , (14)

T00 = 1

2
Ei Ei + 1

2
B2 (15)

+ (D0φ)∗ D0φ + (Diφ)∗ Diφ + V (|φ|)
+ (D0χ)∗ D0χ + (Diχ)∗ Diχ + U (|χ |) ,

where Ei = F0i are the components of electric field strength and 
B = −F12 is the magnetic field strength.

In this paper we adopt the following gauge condition: ∂0φ = 0. 
Using the analogy of Q-ball, we find a soliton solution of model 
(1) that minimizes the energy E = ∫

T00d2x = H = ∫
Hd2x (H is 

the density of the Hamiltonian H) at a fixed value of the Noether 
charge Q χ = ∫

j0
χd2x. In this case, the soliton solution is an un-

conditional extremum of the functional

F =
∫

Hd2x − ω

∫
j0
χd2x = H − ωQ χ , (16)

where ω is the Lagrange multiplier. The Noether charge Q χ is 
written in terms of the canonically conjugated fields χ , χ∗ , πχ =
∂L/∂ (∂0χ) = (D0χ)∗ , and πχ∗ = ∂L/∂ (∂0χ

∗) = D0χ as follows:

Q χ = −i

∫ (
χπχ − χ∗πχ∗

)
d2x. (17)

From Eq. (17), we obtain the variation of the Noether charge Q χ

in terms of the canonically conjugate fields:

δQ χ = −i

∫ (
χδπχ + πχδχ − c.c.

)
d2x. (18)

At the same time, the first variation of the functional F vanishes 
for the soliton solution:

δF = δH − ωδQ χ = 0. (19)

From Eqs. (18) and (19), we obtain the following Hamilton field 
equations:

∂0χ = δH

δπχ
= −iωχ, ∂0χ

∗ = δH

δπχ∗
= iωχ∗, (20)

while time derivatives of the other model’s fields are equal to zero. 
We see that the scalar field χ has the time dependence of Q-ball 
type:

χ (x) = χ (x)exp (−iωt) , (21)

whereas the other model’s fields do not depend on time for the 
adopted gauge condition ∂0φ = 0. Extremum condition (19) leads 
to the important relation for the soliton solution:

dE

dQ χ
= ω, (22)

where it is understood that the Lagrange multiplier ω is some 
function of the Noether charge Q χ .
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3. The ansatz and some properties of the solution

To solve field equations (9)–(11), we apply the following ansatz:

Aμ (x) =
(

A0 (r)

er
,

1

er
εi jn j A (r)

)
,

φ (x) = v exp (iNθ) F (r) ,

χ (x) = σ (r)exp (−iωt) , (23)

where εi j are the components of the two-dimensional antisym-
metric tensor (ε12 = 1) and n j are those of the two-dimensional 
radial unit vector n = (cos (θ) , sin (θ)). We suppose that the func-
tion σ (r) is real, so ansatz (23) completely fixes the model’s gauge.

It can be shown that ansatz (23) is consistent with field equa-
tions (9)–(11), so we get the system of second order nonlinear 
differential equations for the ansatz functions:

A′′
0(r) − A′

0(r)

r
+ A0(r)

r2
− μA′(r)

− 2
(

e2 v2 F (r)2 + q2σ (r)2
)

× A0(r) + 2eqωrσ (r)2 = 0, (24)

A′′(r) − A′(r)
r

− μA′
0(r)

− 2e2 v2 (N + A(r)) F (r)2

− 2q2σ (r)2 A (r) + μ
A0(r)

r
= 0, (25)

F ′′(r) + F ′(r)
r

− F (r)

r2

×
(
(N + A(r))2 − A0(r)

2
)

+ λv2
(

1 − F (r)2
)

F (r) = 0, (26)

σ ′′(r) + σ ′(r)
r

+ σ (r)

×
((

ω − q

e

A0 (r)

r

)2

− q2

e2

A (r)2

r2

)
(27)

−
(

m2 − 2gσ (r)2 + 3hσ (r)4
)
σ (r) = 0.

The expression for the energy density E = T00 can also be written 
in terms of the ansatz functions:

E = 1

2

A′2

e2r2
+ 1

2

((
A0

er

)′)2

+ v2 F ′2

+
(
(N + A)2 + A0

2
)

r2
v2 F 2

+ λ

2
v4

(
F 2 − 1

)2 + σ ′2

+
(
ω − q

A0

er

)2

σ 2 + q2

e2

A2

r2
σ 2

+ m2σ 2 − gσ 4 + hσ 6. (28)

The regularity of the soliton solution at r = 0 and the finiteness 
of the soliton’s energy E = 2π

∫ ∞
0 E (r) rdr lead us to the following 

boundary conditions for the ansatz functions:
A0(0) = 0, A0(r) −→
r→∞ 0,

A(0) = 0, A(r) −→
r→∞ −N,

F (0) = 0, F (r) −→
r→∞ 1,

σ ′(0) = 0, σ (r) −→
r→∞ 0. (29)

From the boundary conditions for A(r) it follows that the magnetic 
flux of the vortex-Q-ball system is quantized:

� = 2π

∞∫
0

B (r) rdr = 2π

e
N, (30)

where B(r) = −A′(r)/(er) is the magnetic field strength. Moreover, 
from Eqs. (13) and (30) it follows that the total electric charge of 
the vortex-Q-ball system is also quantized:

Q = −2π

e
μN. (31)

In terms of the ansatz functions, the C-transformation is writ-
ten as

ω → −ω, N → −N, A0 → −A0,

A → −A, F → F , σ → σ . (32)

It is easily shown that Eqs. (24)–(27) are invariant under trans-
formation (32) as well as energy density (28). According to 
Eq. (8), C-transformation (32) is the only discrete one that leaves 
Eqs. (24)–(27) invariant. All other discrete transformations (P , C P , 
and T ) do not leave Eqs. (24)–(27) invariant. We see that trans-
formation (32) changes the sign of ω, but at the same time, it 
also changes the sign of the soliton’s winding number. From this it 
follows that the energy of a soliton with a given fixed N is not in-
variant under the change of sign of the phase frequency: E (−ω) �=
E (ω). Similarly, it can be shown that Q φ,χ (−ω) �= −Q φ,χ (ω), so 
the absolute values of the Noether charges are also not invariant.

From Eqs. (24)–(27) and boundary conditions (29) it follows 
that at r = 0, the power expansion of the soliton solution has the 
form:

A0 (r) = a1r + a3

3! r3 + O
(
r5) ,

A (r) = b2

2! r2 + b4

4! r4 + O
(

r6
)

,

F (r) = c|N|
|N|! r|N| + c|N|+2

(|N| + 2)! r|N|+2 + O
(

r|N|+4
)

,

σ (r) = d0 + d2

2! r2 + O
(

r4
)

. (33)

In Eq. (33), the expressions of the next-to-leading coefficients a3, 
b4, c|N|+2, and d2 are

a3 = 3qd2
0 (a1q − eω) + 3

2
μb2,

b4 = 3
(

q2b2d2
0 + 2Ne2 v2c2|N|δ1,|N|

)
+ μa3,

c|N|+2 = − c|N|
4

(|N| + 2)
(

a2
1 + |N| |b2| + λv2

)
,

d2 = d0

2

[
d2

0

(
3d2

0h − 2g
)

+ e−2 (qa1 + e (m − ω))

× (−qa1 + e (m + ω))
]
, (34)
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where δ1,|N| is the Kronecker symbol. Linearization of Eqs. (24)–
(27) at large r and use of corresponding boundary conditions (29)
lead us to the asymptotic form of the solution as r → ∞:

A0 (r) ∼ a∞
√

mAr exp (−mAr) ,

A (r) ∼ −N + a∞
√

mAr exp (−mAr) ,

F (r) ∼ 1 + c∞
exp

(−mφr
)

√
mφr

,

σ (r) ∼ d∞
exp

(
−√

m2 − ω2r
)

√
mr

, (35)

where

mA =
√

2e2 v2 + μ2

4
− μ

2
(36)

is the mass of the gauge boson and mφ = √
2λv is the mass of the 

scalar φ-particle.
For symmetric energy-momentum tensor (14), the angular mo-

mentum tensor has the form

Jλμν = xμT λν − xν T λμ. (37)

Use of Eqs. (14), (23), and (37) leads us to the angular momen-
tum’s density expressed in terms of the ansatz functions:

J = 1

2
εi j J 0i j = −rB Er + 2

q

e
A

(
ω − q

A0

er

)
σ 2

− 2
A0 (N + A)

r
v2 F 2. (38)

In Eq. (38), Er(r) = − (A0 (r) / (er))′ is the radial electric field 
strength. Integrating the term −rB Er = −e−2 A′ (A0/r)′ by parts, 
taking into account boundary conditions (29), and using Eq. (24)
to eliminate A′′

0, we obtain the expression for the soliton’s angular 
momentum J = 2π

∫ ∞
0 J (r) rdr:

J = −4π N v2

∞∫
0

A0 (r) F 2(r)dr + π
μ

e2
N2. (39)

At the same time, Eqs. (7) and (23) lead us to the following ex-
pression of the Noether charge Q φ :

Q φ = −4π v2

∞∫
0

A0 (r) F 2(r)dr. (40)

From Eqs. (13), (31), (39), and (40) it follows that for the vortex-
Q-ball system the important relation holds between the angular 
momentum J and the Noether charges Q φ and Q χ :

J = N Q φ + π
μ

e2
N2 = −N

q

e
Q χ − π

μ

e2
N2. (41)

We see that the angular momentum depends linearly on the 
Noether charges of the scalar fields.

Any solution of field equations (9)–(11) is an extremum of 
the action S = ∫

Ld2xdt . It is readily seen, however, that the La-
grangian density (1) does not depend on time if the field config-
urations are those of ansatz (23). It follows that any solution of 
system (24)–(27) is an extremum of the Lagrangian L = ∫

Ld2x. Let 
A0(r), A(r), F (r), and σ(r) be a solution of system (24)–(27) sat-
isfying boundary conditions (29). After the scale transformation of 
Fig. 1. The numerical solution m−1/2 A0(r)/(er) (dotted), A(r) (dashed), F (r) (solid), 
and m−1/2σ(r) (dash-dotted) for the vortex-Q-ball system. The model’s parameters 
are e = q = 0.3 m1/2, μ = 0.5 m, λ = 0.335 m, v = 1.221 m1/2, g = 1.0 m, h = 0.26, 
and N = 1. The phase frequency ω = 0.38 m.

the solution’s argument r → λr, the Lagrangian L becomes a func-
tion of the scale parameter λ. The function L (λ) has an extremum 
at λ = 1, so its derivative with respect to λ vanishes at this point: 
dL/dλ|λ=1 = 0. From this equation it follows that the virial relation 
holds for the vortex-Q-ball system:

2
(

E(E) − E(H) + E(P )
)

+ L(C S) − ωQ χ = 0, (42)

where

E(E) = 1

2

∫
Ei Eid

2x = π

∞∫
0

((
A0

er

)′)2

rdr (43)

is the electric field’s energy,

E(B) = 1

2

∫
B2d2x = π

∞∫
0

A′2

e2r
dr (44)

is the magnetic field’s energy,

E(P ) = 2π

∞∫
0

[V (|φ|) + U (|χ |)] rdr (45)

is the potential part of the soliton’s energy, and

L(C S) = μ

4

∫
ερστ Fρσ Aτ d2x (46)

is the Chern–Simons part of the model’s Lagrangian.

4. Numerical results

Now we present some numerical results concerning the vortex-
Q-ball system. For numerical calculations, we use the natural units 
c = 1, h̄ = 1. In addition, the mass m of scalar χ -particle is used as 
the energy unit. After that, the model is completely determined by 
the seven parameters: e, q, μ, λ, v , g , and h. We chose the follow-
ing values of these parameters: e = q = 0.3 m1/2, μ = 0.5 m, λ =
0.335 m, v = 1.221 m1/2, g = 1.0 m, and h = 0.26, where the pa-
rameters’ dimensions correspond to the (2 + 1)-dimensional case. 
The correctness of the numerical solution were checked by use of 
Eqs. (13), (22), (41), and (42).

In Fig. 1, we can see the dimensionless zero component 
m−1/2 A0(r)/(er) of the gauge potential along with the dimension-
less ansatz functions A(r), F (r), and m−1/2σ(r). The vortex part 
of the soliton system is in the topological sector with N = 1, the 
phase frequency ω is equal to 0.38 m. Fig. 2 presents the numerical 
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Fig. 2. The numerical solution m−1/2 A0(r)/(er) (dotted), A(r) (dashed), F (r) (solid), 
and m−1/2σ(r) (dash-dotted) for the system of vortex and Q-ball that do not inter-
act with each other. The model’s parameters are the same as in Fig. 1.

Fig. 3. The dimensionless versions of the electric field strength Ẽr(r) = m−3/2 Er(r)
(solid), the magnetic field strength B̃(r) = m−3/2 B(r) (dashed), the scaled en-
ergy density 0.5 Ẽ(r) = 0.5 m−3E(r) (dash-dotted), the electric charge density 
j̃0(r) = m−5/2 j0(r) (dash-dot-dotted), and the scaled angular momentum’s density 
0.5 J̃ (r) = 0.5 m−2J (r) (dotted), corresponding to the solution in Fig. 1.

solution for the case q = 0, whereas the other model’s parameters 
remain the same as in Fig. 1. This corresponds to superimposed 
gauged vortex and non-gauged Q-ball that do not interact with 
each other. From Figs. 1 and 2, we can conclude that the gauge 
interaction between the vortex and Q-ball components leads to 
significant changes in the shapes of the ansatz functions A0(r), 
A(r), and σ(r), while the shape of F (r) does not change signifi-
cantly.

Fig. 3 shows the dimensionless versions of the electric field 
strength Ẽr(r) = m−3/2 Er(r), the magnetic field strength B̃(r) =
m−3/2 B(r), the scaled energy density 0.5 Ẽ(r) = 0.5 m−3E(r), the 
electric charge density j̃0(r) = m−5/2 j0(r), and the scaled angu-
lar momentum’s density 0.5 J̃ (r) = 0.5 m−2J (r) that correspond 
to the soliton solution in Fig. 1. We see that just as in [19], the 
vortex-Q-ball system consists of three parts: the central transition 
region, the inner region, and the external transition region. We also 
see that the densities of the energy and the angular momentum 
are approximately constant in the inner region, while the electric 
and magnetic field strengths are close to zero there.

In Fig. 4, we can see the dimensionless soliton energy Ẽ =
m−1 E as a function of the dimensionless phase frequency ω̃ =
m−1ω. The function Ẽ

(
ω̃

)
is presented in the range from the min-

imum values of 
∣∣ω̃∣∣ that we have reached by numerical methods 

to its maximum value of 1. The most important feature of Fig. 4
is that the soliton’s energy is not invariant under the change of 
sign of the phase frequency: Ẽ

(−ω̃
) �= Ẽ

(
ω̃

)
. This fact is a direct 

consequence of the T -invariance breaking, which is caused by the 
Chern–Simons term in the Lagrangian (1). From Fig. 4 it follows 
that the soliton’s energy E tends to infinity as 

∣∣ω̃∣∣ tends to its 
minimum values (thin-wall regime). In the thin-wall regime, the 
Fig. 4. The dimensionless soliton energy Ẽ = m−1 E as a function of the dimension-
less phase frequency ω̃ = m−1ω. The model’s parameters are the same as in Fig. 1.

Fig. 5. The dimensionless soliton energy Ẽ = m−1 E (solid for ω̃ > 0 and dash-dotted 
for ω̃ < 0) and the absolute value of Noether charge Q χ (dashed for ω̃ > 0 and dot-
ted for ω̃ < 0) as functions of the absolute value of dimensionless phase frequency ∣∣ω̃∣∣ in a neighbourhood of 

∣∣ω̃∣∣ = 1.

spatial size of the soliton’s inner region increases indefinitely, so 
the main contribution to the soliton’s energy and angular momen-
tum comes from this region.

As ω̃ → 1, the vortex-Q-ball system goes into the thick-wall 
regime. As well as in the thin-wall regime, the soliton’s Noether 
charge Q χ and energy E tend to infinity in the thick-wall regime. 
It was found numerically that Q χ (ω̃) and Ẽ(ω̃) have the following 
behaviour as ω̃ → 1:

Q χ −→
ω̃→1

B + A
(
1 − ω̃

)− 1
2 ,

Ẽ −→
ω̃→1

C + A
(
2 − ω̃

) (
1 − ω̃

)− 1
2 , (47)

where A, B , and C are positive constants. From Eq. (47) it follows 
that the behaviour of Q χ

(
ω̃

)
and Ẽ

(
ω̃

)
in the thick-wall regime 

is in agreement with Eq. (22). Such behaviour of Q χ (ω̃) and Ẽ(ω̃)

in a neighbourhood of the maximum value ω̃ = 1 is very different 
from that of the two-dimensional non-gauged Q-ball [20]. It is also 
quite different from the behaviour of the vortex-Q-ball system [19]
in the Maxwell gauge model. However, the behaviour of Q χ (ω̃)

and Ẽ(ω̃) in a neighbourhood of ω̃ = 1 is similar to that of the 
usual three-dimensional Q-ball [20].

In Fig. 5, we can see the dependences of the dimensionless soli-
ton energy Ẽ and the absolute value of Noether charge Q χ (which 
is negative for ω̃ < 0) on the absolute value of ω̃ in a neigh-
bourhood of 

∣∣ω̃∣∣ = 1. From Fig. 5 it follows that the behaviour of 
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Fig. 6. The vortex-Q-ball system’s dimensionless energy Ẽ as a function of the abso-
lute value of Noether charge Q χ for ω̃ > 0 (solid) and for ω̃ < 0 (dash-dotted), and 
that for the two-dimensional non-gauged Q-ball (dash-dot-dotted) with the same 
parameters m, g , and h as for the vortex-Q-ball system. The dashed line is the 
straight line Ẽ = ∣∣Q χ

∣∣.
the vortex-Q-ball system in the neighbourhoods of ω̃ = −1 and 
ω̃ = 1 is completely different. Indeed, its behaviour near ω̃ = 1
corresponds to thick-wall regime (47). At the same time, its be-
haviour near ω̃ = −1 is rather unusual. Firstly, there is no thick-
wall regime here. Secondly, the Q-ball component of the vortex-
Q-ball system disappears at ω̃ = −0.93. For ω̃ ∈ (−1,−0.93), we 
have only the single Maxwell–Chern–Simons vortex without any 
Q-ball component.

Fig. 6 shows the dimensionless energy Ẽ as a function of 
the absolute value of Noether charge Q χ for the both signs 
of ω̃. It also shows the similar dependence Ẽ

(∣∣Q χ

∣∣) for the two-
dimensional non-gauged Q-ball with the same parameters m, g , 
and h as for the vortex-Q-ball system. In addition, the straight 
line Ẽ = ∣∣Q χ

∣∣ is also shown in Fig. 6. We can see that the curve 
Ẽ(

∣∣Q χ

∣∣) corresponding to the two-dimensional Q-ball is tangent to 
the straight line Ẽ = ∣∣Q χ

∣∣ at some nonzero 
∣∣Q χ

∣∣ as it should be 
[20]. In contrast to this, the vortex-Q-ball system is described by 
the two curves, which correspond to the both signs of the phase 
frequency ω̃. The curve Ẽ(Q χ ) corresponding to the positive ω̃
is similar to that of three-dimensional Q-ball. In particular, it has 
the cusp and consists of two branches. As Q χ → ∞, the lower 
branch goes into the thin-wall regime, while the upper one goes 
into the thick-wall regime. At the same time, the curve Ẽ(−Q χ )

corresponding to the negative ω̃ has no cusp and consists of only 
one branch. The curve starts at Q χ = 0 and goes into the thin-wall 
regime as Q χ → −∞. From Fig. 6, we can conclude that in the 
thin-wall regime the Q-ball component of the vortex-Q-ball sys-
tem is stable to the decay into the massive scalar χ -particles.

5. Conclusions

In the present paper, we have researched the soliton system 
consisting of a vortex and a Q-ball that interact with each other 
through a common Abelian gauge field. Like a vortex, this two-
dimensional soliton system has quantized magnetic flux (30). Due 
to the Chern–Simons term in the Lagrangian, the quantized mag-
netic flux leads to quantized electric charge (31) of the soliton 
system and, as a consequence, to a nonzero radial electric field. 
As a result, the soliton system possesses nonzero angular mo-
mentum (41) that depends linearly on the Noether charges of 
the scalar fields. Owing to the Chern–Simons term, the energy 
of the vortex-Q-ball system is not invariant under the sign re-
versal of the phase frequency ω. This in turn leads to the sig-
nificant change of the dependence E(Q χ ) in comparison with 
the vortex-Q-ball system [19] and with the two-dimensional non-
gauged Q-ball [20]. The vortex-Q-ball system combines properties 
of both nontopological (Eq. (22)) and topological (boundary condi-
tion (29) for A(r) and, as a consequence, magnetic flux quantiza-
tion (30)) solitons.

Finally, let us point out a possible application of the results ob-
tained in [19] and in the present paper. A vortex-Q-ball string may 
arise when a cosmic string passes through a charged scalar con-
densate. Such a condensate could exist in the early universe; elec-
trically charged boson stars [21], if they exist, also consist of such 
a condensate. A part of the condensate may be carried away by the 
passing cosmic vortex string, with the result that the vortex-Q-ball 
string arises. In this case, the gauge interaction between vortex and 
Q-ball components of the vortex-Q-ball string leads to significant 
changes of their properties.
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