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Abstract. Some options of coupling filtration models are suggested using irreversible state 

equations in differential form. State equations include explicitly the coefficient of 

compressibility, coefficients of concentration expansion and other physical properties affecting 

rheological properties and composition. To construct the models, the improvement of 

thermodynamic relations is used. New physical factors are introduced with the help of new 

thermodynamic variables. The chemical viscosity, pressure diffusion and concentration 

expansion phenomena are taken into account. The simplest particular problems illustrating the 

role of new effects are distinguished for stationary filtration regime. The revealed nonlinear 

effects can be important when considering biology liquid flows in porous biomaterials where 

deviations from classical laws are possible. 

1.  Introduction 

Many biology objects are the composites with complex structure of porous space. Artificial media 

synthesized for catalysis and chemical technology should be similar to natural objects [1]. This 

assumes that simulation of flows in porous natural and man-made biology objects should be based on 

the filtration laws. However interrelation between various physical effects can lead to the deviation on 

habitual conceptions. 

Classical filtration Darсy’s law (1856) connects filtration velocity w of fluid with pressure field p  

 p
k



w , (1) 

where k is the permeability, and   is the friction coefficient of fluid with pore walls or viscosity. 

There are various generalizations of this law for high rate flows, irreversible conditions, heterogeneous 

fluids, two-phase flows, media with double porosity, and etc. [2-4]. Thermodynamically based 

generalization of law (1) for multicomponent and multi-phase flows was made in [5,6]. General form 

of motion equation includes (1) as particular case: 
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where SSa,a p wv ,  and pS  is the area occupied by pores in the section S ; 1F  is gravity force, 

and 2F  is the force of internal friction depending on filtration velocity.  

If fluid is multicomponent, the following equations for species are necessary [2,3] 

 kkk
k C

t

Cm














Jw , (3) 

where kC are mass concentrations, kJ  are diffusion fluxes, k  are sources of species due to chemical 

reactions and mass exchange with solid skeleton; m –is porosity. We should add the continuity 

equation and state equations to the previous one. First of them has usual form 

 



wm

t
, (4) 

where σ is possible mass source from porous skeleton. State equations define the connection between 

the pressure and other variables, and can be found based on experiment or irreversible 

thermodynamics.  

Naturally, in multicomponent system, the balance of masses and diffusion fluxes take place 

This work demonstrates the step-by-step complication of filtration models by taking into account 

the coupling effects between various physical phenomena, when constitutive equations are based on 

irreversible thermodynamics, and rheological features are associated with physical effects. 

2.  Constitutive equations in thermodynamics 

Thermodynamics allows ascertaining two groups of constitutive equations [7,8], and assumes that the 

pressure consists of two parts Ve ppp  . First term increment depends linearly with the change in 

volume (strains), concentrations, and other thermodynamical variables. Second term depends on the 

rates of change of thermodynamical variables. First group of constitutive equations follows from 

Gibbs equation written in suitable form. These are  

 





n

k

kkT
e dCpddp

1

1
; (5) 

 



n

i

i
k
ikk dCdpdg

1

  , (6) 

where 1 Tkkp , k  is the concentration expansion coefficient, T  is isothermal compressibility. 

We can call the coefficients kp  as partial pressures. The coefficients 
k
l

  depend on the mixture under 

study. Here the coupling or cross effect consists of the interrelation between mechanical and chemical 

processes. The pressure can change due to the liquid composition variation, and the chemical 

potentials of the liquid components change when the volume or pressure varies. 

Linear Onsager theory gives the second group of constitutive equations. For example, when only 

one chemical reaction takes place with the rate φ, we can write  

 Ap VV
V  v ; (7) 

 AkchV  v , (8) 

where V  is the volume viscosity, chk  is the reaction rate constant; A  is the chemical affinity, 

 PPRR gmgmA  ; then k=R,P in (3),(5) and (6); coefficient V  describes the viscosity connecting 

with chemical reaction and the dependence of reaction rate on fluid mobility.  
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More complex generalizations are possible in modern thermodynamics [9,10] for multi-phase flows 

in porous media and for the media with double porosity. 

3.  Examples for stationary filtration regimes 

Naturally, all classical filtration models follow from above presented equations. Here we consider 

only the simplest models to illustrate the influence of “new” factors appearing due to interrelation 

between phenomena of various physical natures. Note that obtained effects are similar to those which 

appear when the dependencies of permeability, porosity, viscosity and etc. on pressure are taken into 

consideration [11,12].  

3.1.  Imperfect no viscous gas 

For imperfect one-component gas, the state equation for “elastic” part of the pressure 

 






 dddp

TT

e 1
 or 




T

ep
1

 (9) 

follows from (5). “Viscous” part of the pressure equals to zero, and epp  . For stationary flow, two 

equations remain  

 0 v  and p
a

k



v . (10) 

If the properties do not change with the pressure, the equation for p  takes the form 

   0
2
 pp T . (11) 

This leads to the simple problem for plane layer 

 0

2

2

2











dx

dp

dx

pd
T ; A      0 pp:x  ; Bpp:Lx        . (12) 

It is convenient to write exact analytical solution for this problem in dimensionless variables 

 Appp  , *VVu  , Lx ; 
L

p

a

k
V A

*


 .  

Consequently we obtain 

   21

1
CClnp

T




 , 
  
  




11

11

T

T

exp

exp
u . (13) 

where ATT p , AB pp  are parameters, C1, C2 are integration constants depending on  ,T  

(not presented here). The tendency of the solution change at compressibility decrease is shown from 

Figure 1. For 50.T   the result does not distinguish from the solution for incompressible liquid.  

More strong effects appear when coupling phenomena are taken into account. 

3.2.  Compressible viscous liquid 

For imperfect single component compressible liquid, the state equation stays the same. However the 

pressure consists of two parts and Darcy law turns to 

  Ve pp
a

k
p

a

k






v . (14) 
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Using (9) for first part of the pressure (“elastic”) and relation 

 v V
Vp  (15) 

for “viscous” part, we find the equation for the velocity 

   01  
vvvvv ka TVT . (16) 
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Figure 1. Pressure and velocity in plane layer for the case of filtration of imperfect gas; 

503  22  51 ,.;.;.T  , points correspond to incompressible liquid 

 

For example, for plane layer, this equation is reduced to 

 02

2

2




 V
k

a

dx

dV

dx

Vd
V TVT . (17) 

It is not difficult using (14) to obtain the equation for total pressure for this case 

 0

2

2

2

3

3






















dx

dp

dx

pd

dx

pd

dx

dp

a

k
TVT . (18) 

Additionally we have the relation constV   from continuity equation. 

3.3.  Binary non-viscous imperfect mixture 

For imperfect two-component compressible mixture without viscosity ( epp  ) and without chemical 

reaction, the state equation will contain new parameter, namely – concentration expansion coefficient 

C : 

 














 dC

d
dp C

T

1
. (19) 

This parameter C  has thermodynamical definition: 12 C ,    Tk C ; the 

coefficients 12  ,  can be calculated based on atomic volumes. Neglecting the pressure diffusion, we 

come for stationary filtration regime to the coupling equation system including (10) and 

 














 Cp C

T

1
, (20) 

 CDCa v . (21) 
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Here usual Fick law and condition constD   are assumed correct. 

From these equations one can find the equation for the pressure 

   0 pCpp CT , (22) 

coupled with the concentration. 

Than the problem for plane layer with given pressure drop will include the coupled equations: 

 0
2

2











dx

dp

dx

dC

dx

dp

dx

pd
CT ; (23) 

 
2

2

dx

Cd
D

dx

dC

dx

dpk



 . (24) 

The boundary conditions for pressure are similar to (12), and for concentration are 

 A1    ;CC   0 pp:x   and Bpp:Lx     ;CC   2 . (25) 

The problem will be a more complex, if diffusion coefficient depends on the pressure and 

concentration. 

3.4.  Filtration together with the pressure diffusion  

Here we use the state equation (6) for chemical potentials and take into account that diffusion fluxes 

for species are proportional to gradient of their chemical potentials. For binary imperfect mixture and 

T=const, one can write the relations 

  









i

i
kik

T

g
LJ  (26) 

for mass fluxes of species, where chemical potentials follow from (6) or similar equation is written 

based on Gibbs equation for Gibbs energy 
k

kkCgg . Usual diffusion theory gives 

   e
C p

RT

DCm
CCfD J . (27) 

where m  is the molar mass of diffused species, R – is universal gas constant. The equations for parts 

of the pressure and for velocity stay the same. The diffusion equation gains additional term: 

     epBCCCDfCa v , (28) 

where 
RT

Dm
B C  is pressure diffusion coefficient. This is not independent value and is calculated 

from other properties.  

3.5.  Filtration together with chemical reactions  

The most complex model appears when chemical reaction can accompany the flows in porous body. 

Different situation are possible here. Firstly, when part of fluid is absorbed by solid skeleton, in (3) 

0 kk C . In this case, diffusion equations (21), (28) do not change.  

Secondly, when reactions happen in volume of pores, 0 , and  

  

i

ikikk m , (29) 
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where i  is the rate of reaction i. For one reaction with the rate (8), it is necessary to calculate 

chemical affinity. By definition, the chemical affinity equals to the sum of chemical potentials of 

species multiplied by corresponding molar mass and stoichiometric coefficients. So, for reaction 

oductPrRR 32211  , we can write 

  333222111 gmgmgmA  . (30) 

Hence,  321 C,C,C,pAA e , it is not difficult, using the Gibbs-Duhem equation and differential 

relations of type (6), to obtain  

       3311 dCCfdCCfdpCfdA kk
e

kp    

with functions 31 f,f,f p  depending on composition and physical properties. This speaks that 

“viscous” pressure (7) and “elastic” pressure (5) will be interrelated with each other. Hence, chemical 

viscosity will include primary (connected with composition change) and secondary (connected with 

viscosity change in chemically reacted mixture) effects. Note the bother effects can appear in 

incompressible liquid, when 

       32331211 CppffCppffp pp
V    

These effects demand a special investigation. 

4.  Conclusion 

So, the resources of irreversible thermodynamics are demonstrated to reveal the features of filtration 

flows leading to the deviation from Darcy law. Some limiting situations are studied to show the 

nonlinearities associated with coupling effects between various phenomena. Pressure diffusion and 

chemical viscosity can be important for biological applications where mass transfer is insured by 

diffusion together with filtration.  
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