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Abstract. This paper shows the possibility to synthesize directly the titanium dioxide in a 
supersonic jet of an electric discharge erosive plasma. Using the X-ray diffractometry it is 
shown that the obtained product contains two main crystalline phases: anatase and rutile with 
tetragonal syngony. The size of the coherent scattering region is less 100 nm. 

1. Introduction 
Hydrogen energy is a promising direction for the development of the electric power industry, since it 
allows obtaining electric energy in an environmentally friendly way with high efficiency. The main 
limiting factor hindering the introduction of this technology is the low efficiency of hydrogen 
generation processes as an energy carrier [1]. Along with various existing methods of producing 
hydrogen, the photocatalytic method is considered to be the most optimal because of its relative 
economy and low resource consumption [2, 3]. The efficiency of hydrogen production by this method 
is determined by the properties of the used materials (catalysts), which causes exploratory research in 
the field of the high-performance catalysts synthesis. 

According to the literature [4, 5], titanium dioxide TiO2 can be used as such materials. The 
possibility of using titanium dioxide as a photocatalyst is due to its properties, such as: catalytic 
activity, high stability, low material cost [6–8]. At present, there are several ways to synthesize this 
chemical compound in a nanoscale state [9], however, most of these methods have considerable time 
and energy costs. In this paper, the possibility of obtaining ultrafine TiO2 using a plasma dynamic 
method. This method is based on a coaxial magnetoplasma accelerator [10]. Unlike existing methods, 
plasma dynamic synthesis also allows to obtain nanoscale materials, while it is environmentally safe, 
one-step, fast (less than 10-3 seconds) and does not require additional preparation of precursors. 

2. Experimental part 
The plasma dynamic synthesis is based on the operation of a pulsed high-current coaxial 
magnetoplasma accelerator with titanium electrodes [11], the sketch-map of which is shown in 
figure 1. Titanium BT-I-0 is used as electrodes. The power supply of the accelerator is carried out 
from a capacitive energy storage device with the following operating parameters: charging voltage up 
to 5.0 kV and capacitor battery capacity up to 28.8 mF. 

The process of the experiment begins with charging the capacitive energy storage device to the 
required voltage Uch. After closing the power switches K, the discharge current of the capacitor 
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batteries flows along the contour, thereby creating a plasma flow due to the breakdown of the 
interelectrode gap. During the outflow and acceleration of plasma in the accelerating channel, 
electroerosion wear of the titanium surface occurs due to high temperatures in places where the arc 
closes on the surface of the accelerating channel. The material acquired from the accelerating channel 
surface, being in the discharge current shell, undergoes a change from a solid to a plasma state. At the 
same time, the material is accelerated to speeds of approximately 5 km/s in the form of a plasma 
electroerosive jet. 

Figure 1. Sketch-map, elements of coaxial magnetoplasma accelerator: 1) central electrode; 
2) cap; 3) central electrode insulation; 4) contact cylinder; 5) solenoid; 6) hull; 
7) solenoid insulation; 8) contact flange; 9) titanium electrode-barrel. 

The plasma dynamic synthesis process of TiO2 proceeds in the shock wave head of a supersonic 
plasma jet. In this part of the plasma, the product of synthesis (TiO2) is sputtered in the liquid phase, 
and then the process of ultrafine crystalline particles formation proceeds. The hypersonic plasma jet 
expires in a volume of the sealed chamber-reactor filled with a gaseous mixture (in this experiment, 
air) at room temperature and a pressure of 1.0 atmosphere. After half an hour it is possible to collect 
the product of plasma dynamic synthesis. The experiment was carried out with the parameters listed in 
table 1 (charging capacity Cch, charging voltage Uch, accumulated energy W, internal diameter of the 
electrode-barrel d, atmosphere in the chamber-reactor, pressure in the chamber-reactor p, room 
temperature T). 

Table 1. Experiment parameters. 

Сch 
(mF) 

Uch 

(kV) 
W 

(kJ) 
l 

(mm) 
d 

(mm) 
Atmosphere 

P 
(atm.) 

T 
(°C) 

14.4 2.5 45 230 21 Air 1 20 

The product of plasma dynamic synthesis without any additional preparation was studied by X-ray 
diffractometry. Shimadzu XRD-7000S (Cu-Kα) equipped with a counting monochromator was used. A 
full-profile X-ray structural analysis "Powder Cell 2.4" with the structural data base PDF4+ was used 
too. 

3. Results and discussion 
Figure 2 shows the X-ray diffraction pattern of the powder obtained by plasma dynamic method. The 
result of the research showed the presence in the composition of the synthesized product of two 
modifications of titanium dioxide − tetragonal rutile (rTiO2) and tetragonal anatase (aTiO2). The main 
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crystalline phase is titanium dioxide with rutile modification, the mass content of which is 63%. 
Anatase mass content is 30%. Also the phase of cubic titanium nitride (cTiN) revealed in the 
synthesized material. There is reason to assume the presence in the product of other crystalline phases 
(Ti, TiO, Ti2O3), as well as the amorphous phase of TiO2, but XRD did not show their presence. To 
clarify the phase composition it is necessary to conduct additional studies. 

The formation of titanium nitride and titanium oxides is due to the fact that the experiment was 
conducted under atmospheric conditions (in air), which contains nitrogen (about 78%) and oxygen 
(about 21%). Despite the predominance of nitrogen, the titanium nitride mass content in the product of 
plasma dynamic synthesis is only 7%. This is due to the fact that the formation of metal oxides occurs 
at lower energy costs (due to the higher electronegativity of oxygen compared to nitrogen [12]). 

 

Figure 2. X-ray diffractogram of a powder product obtained by plasma dynamic synthesis. 

Anatase is often considered the most photocatalytically active phase of TiO2, but the simultaneous 
presence of rutile and anatase crystalline modifications is more active [13, 14]. However, titanium 
dioxide shows its activity only under the action of ultraviolet radiation [15–17]. To drift the absorption 
spectrum of titanium dioxide to the visible region, this compound is doped with nitrogen atoms or 
treated with nitrogen-containing compounds [18, 19]. Due to this fact, it can be assumed that the 
presence in the synthesized product of rutile and anatase modification, as well as titanium nitride, can 
positively affect its photocatalytic properties. 

Table 2. Main data of fill-profile structural phase analysis of the synthesized product. 

Table 2 presents the results of X-ray phase analysis. The lattice parameters of the synthesized 
material deviate from the standard values, which, apparently, can be explained by some imperfection 
of the material structure. The presence of defects is due to a nonequilibrium synthesis process and a 

Phase 
Content 

(% mass.) 
CSR 
(nm) d/d10-3 

Lattice parameters 
experimental/PDF 

a c 
сTiN 7 − − 4.2375/4.2410 − 
rTiO2 63 69.66 0.407 4.6006/4.5940 2.9653/2.9590 
aTiO2 30 50.21 3.350 3.7899/3.7970 9.5248/9.5790 
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high crystallization rate. The size of the coherent scattering regions (CSR) is less than 100 nm, 
therefore that this material is nanostructured. 

4. Conclusion 
The work shows the possibility of obtaining a dispersed titanium dioxide powder by the plasma 
dynamic method using a system based on a coaxial magnetoplasma accelerator with a titanium 
accelerator channel. 

Results of X-ray diffraction analyze showed the presence in powder of two main crystalline 
modifications of titanium dioxide: rutile with tetragonal syngony and anatase with tetragonal syngony. 
Also cubic titanium nitride was found. The presence of this binary chemical compound is determined 
by the conditions of the experiment. The structures obtained in the process of plasma dynamic 
synthesis have some level of imperfection. This fact can positively affect the catalytic activity of the 
synthesized materials. The size of coherent scattering regions is less than 100 nm, therefore, 
presumably, the powder product is nanoscale. 
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