
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

AMSD IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 944 (2018) 012087  doi :10.1088/1742-6596/944/1/012087

Contact interaction of flexible Timoshenko beams  

with small deflections 

I V Papkova
1
, A V Krysko

1,2
, O A  Saltykova

1,2
 , A A Zakharova

2
, V A Krysko

1 

 
1
Department of Mathematic and modelling, Saratov State Technical University, 

Politehnicheskaya str, 77, Saratov, Russia 
2
Department of engineering graphics and industrial design, Tomsk Polytechnic 

University, Sovetskaya str, 84/3, Tomsk, Russia 
 

Abstract.  In this work chaotic dynamics contact interaction of two flexible Tymoshenko beams, 

under the action of a transversal alternating load is investigated. The contact interaction of the 

beams is taken into account by the Kantor model. The geometric nonlinearity is taken into 

account by the model of T. von Karman.The system of partial differential equations of the 

twelfth order reduces to the system of ordinary differential equations by the method of finite 

differences of the second order. The resulting system by methods of Runge-Kutta type of the 

second, fourth and eighth orders was solved.Our theoretical/numerical analysis is supported by 

methods of nonlinear dynamics and the qualitative theory of differential equations. Chaotic 

vibrations of two flexible beams of Timoshenko were investigated and the optimal step values 

over the spatial coordinate and the time steps for the numerical experiment were found. 

Convergence for all applicable numerical methods have been achieved and shown that chaotic 

signals are true. 
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1. Introduction 

Although nonlinear dynamics and contact interaction of beams based on  hypothesis of different approximations 

have been successively used for many years, there still are present open problems originated from both 

engineering and science. Several hypotheses are known that describe the dynamics of a beam element: first, 

second, third approximation theories, and others. The hypothesis of the first approximation is the Euler-Bernoulli 

hypothesis [1], the second-approximation hypothesis or the Tymoshenko hypothesis [2], allows us to take into 

account the normal rotation to the midline after deformation. This theory allows more accurate description of the 

dynamics of the beam element. The nonlinear dynamics of beams, based on various hypotheses, is investigated 

in articles [3-5]. This article allows to prove the truth of the chaotic vibrations of two beams of Timoshenko with 

a small gap, under action of the transverse alternating load, taking into account the contact interaction. In the 

known literature, there are no solutions to such problems. This is a fundamentally important issue. When solving 

such complex non-linear systems of equations by numerical methods, there is a probability of obtaining an 

incorrect solution due to errors in numerical methods. In this paper we shall use the definition of chaos given by 

Gulik [6]. Gulik believes that chaos exists when either there is a significant dependence on the initial conditions 

or the function has a positive Lyapunov exponent at each point of the region. In this case, it is not periodic. As 

initial conditions, in addition to the conditions imposed on the functions entering into the system of differential 

equations, we mean the number of partitions with respect to the spatial coordinate, the order of the Runge-Kutta 

method, and the kinematic hypothesis. To prove the reliability and truth of solutions in chaos methods of 

analysis of nonlinear dynamics were used. These methods include the construction of phase portraits, Fourier 

power spectra, Poincaré pseudo-mappings, wavelet spectra, signals, calculation of the value of the highest 

Lyapunov exponent in three different algorithms Kantz [7], Wolff [8] and Rosenstein [9]. If the results obtained 

by all these methods gave the same result, then we can assume that the results obtained are true. In addition, the 

question of the convergence of the results, depending on the number of partitions along the spatial coordinate 

and on the time step for the finite-difference method, has been investigated. In contrast to previous studies [10], 

in this paper it was required to achieve convergence of results in chaos not only in Fourier power spectra, but 

also in signals. A separate point of the study was the choice of the Runge-Kutta method for solving the contact 

problem. 
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2. Mathematical model 

We study a two-layer beam, where the layers can contact each other as it is shown in Figure 1. We consider the 

case when sticking between the layers of the beam is not possible because contact pressure is small. The 

Cartesian Coordinate system introduced on the Fig. 1. The equations of motion of the beams, as well as the 

boundary and initial conditions, are obtained from energy principle of the Hamilton-Ostrogradskiy 

  

1

0

0/

t

t

dtWПK  , where К – is the kinetic energy, П – is the potential energy, W/  - is the sum of 

elementary work of external forces. In this coordinate system, a structure of two beams, like a two-dimensional 

domain Ω, is defined as follows   hhzhax k 3;,0  ,  t0 . 

 

 
                                                     Figure 1. Scheme of the analyzed beam structure. 
 

To simulate the contact interaction of beams according to the model of Kantor B.Ya. in the equations of the 

deflection beams, it is necessary to introduce the term  )()1( 21 k
i hwwK , 2,1i  - is a beam number, function 
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Taking into account Hooke's law, the expression for the stresses can be written in the form iiiii
xx zHEE 1111   , 
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From the Hamilton-Ostrogradskiy principle, we write the equations of motion of a structure of two 

Timoshenko beams in displacements taking energy dissipation into account in the dimensionless form as 

follows: 
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  - are the non-linear operators, xi  - is a function transverse shear, iw , iu  – are the functions 

of deflections and displacements of beams, respectively. To the system of differential equations (1), we must add 

boundary conditions and initial conditions.  

The system of equations (1), the boundary and initial conditions are reduced to the dimensionless form by means 
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The resulting system of nonlinear partial differential equations (1) together with the boundary and initial 

conditions reduces to the system of ordinary differential equations by the finite differences method with 

approximation )( 2cO , where с – step in the spatial coordinate. At each point of the grid, we obtain a system of 

ordinary differential equations. The Cauchy problem obtained in time is solved by methods of the Runge-Kutta 

type. In the work, different Runge-Kutta methods are compared: the Runge-Kutta of the 4th (rk4), 2nd (rk2) 

orders, the Runge-Kutta-Felberg 4th order (rkf45), 4th order Kesh-Karp (rkck), the Runge-Kutta Prince-

Dormand of the eighth order (rk8pd), the implicit Runge-Kutta method of the second order (rk2imp) and the 4th 

order (rk4imp). On basis of this algorithm was created programs, which allow to solve the problem depending on 

the control parameters  pq ,0 . Great attention in work was given to the question of not penetrating the elements 

of the structure into each other. As noted above, the problems under study are highly nonlinear, so the question 

arises about the reliability of the results obtained. 

  

3. Numerical results 
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On the first beam is acted transverse distributed over the surface sign-variable load type: )sin(0 tqq p ,  
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where 0q  - amplitude, p  - frequency of driving vibrations.  

For the numerical experiment we consider: 1.5p , 50000 q , 1.0kh , 502/  ha , 11  . The frequency of 

the driving vibrations is close to the natural frequency of the beam. A preliminary question was investigated 

about convergence of the finite differences method. In Fig. 2 (а, б) signals are presented, calculated for a 

different number of points division of a segment 440;400;360;240;120;80;40n . For the second beam, the 

convergence by the number of divisions of the segment is much worse and does not completely come. The error 

between signals calculated at n = 360 и n = 400 isс 3%, However, the signals coincide in shape over the entire 

time interval. The results were obtained using the Runge-Kutta method of the 8th order in the Prince-Dormand 

modification (rk8pd).  
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Figure 2. Beam deflection of signals  twi ,5.0  at  506..500t  for 400;360;40n а) First beam, b) Second beam.  

 

In [10], it was considered sufficient to show convergence with respect to the Fourier power spectra for chaotic 

vibrations. By signal, it was impossible to achieve convergence. At 400n  the convergence of results for 

chaotic results, even with a signal, will be achieved.  

Further, the convergence of the signals was investigated depending on the type of the Runge-Kutta method. For 

both beams, the results of the Runge-Kutta methods of the second, fourth and eighth orders coincided 

completely, however, it was decided to use the Prince-Dormand 8-th order method (rk8pd) in further 

calculations, since this method allows automatic step-by time. 

Let us investigate the dynamic characteristics of beams for different number of partitions with respect to the 

spatial coordinate. In Table 1 we give graphs of Fourier power spectra, 3D phase portraits, and Poincaré pseudo-

mappings for both beams. 

Table 1. Dynamic characteristics of beams  
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4. The discussion of the results. 

Analyzing the Fourier power spectra for different numbers of partitions n with respect to the spatial coordinate, 

for beam 1, we can first note an increase, and then a reduction in the number of frequencies and a reduction in 

the noise component with n. At 40n  the power spectra of both beams demonstrate vibrations at linearly 

dependent frequencies 2/p , 3/p , 6/p  and the presence of a noise component at low frequencies. Both 

beams vibrate at the same frequencies, i.e. frequency synchronization of vibrations occurs. An increase in n 

doubles the overall chaotic pedestal. At 120n  in the power spectrum of both beams, the frequency again 

appears 2/p , also a decrease in the chaotic component as compared to 80n . At 240n  in the signal of the 

first and second beams there are frequencies в 2/p  и 4/p . При 360n  и 400n  power spectra are 

cleaned from the noise component, in the signal of both beams there are frequencies 02.15/1  p , 12  и 

12   p , then we can talk about synchronization of oscillations at these frequencies. 

As a rule, 2D phase portraits are considered, but in this paper it is proposed to consider 3D phase portraits 

)'',( ttt www  , in this case we will have information about all the characteristics of the dynamics. Consider 3D 

phase portraits )'',( ttt www  . At the minimum number of nodes n the phase portrait for beam 1 gives a ring, but 

in space it is clear that this ring has a thickness and is non-uniform. For the second beam, the phase portrait is a 

solid spot, which corresponds to chaotic vibrations. With an increase in the number of equations, the phase 

portrait and the appearance of rings are compressed.  

The pseudo-Poincare map for a beam 1 for all n has the shape of an oval, but with small changes in its thickness. 

Beginning from  n = 360 their convergence is noted, as well as for beam 2, where for n = 40 the pseudo-Poincaré 

map is scattered. 

Complex analysis of frequency characteristics, it allows us to make the conclusion about the sufficiency n = 400, 

for the study of nonlinear dynamics and the contact interaction of two beams with a gap, when both beams are 

described by Timoshenko's model. In this paper, the values of the highest Lyapunov exponent for n = 400 are 

calculated, using the methods Wolff, Rosenstein and Kantz. The values are obtained on the basis of solutions of 

the Cauchy problem by the Runge-Kutta method of the 8th order (rk8pd). Different methods of calculating 

Lyapunov's indices must be used to determine the true chaos. When the number of points of division of the beam 
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on n = 40; 80, 120; 240, 360, 400 segments in the method of finite differences, the Lyapunov exponents 

converge at any counting method to the second or third decimal place. 

In Table 2, we give the values of the highest Lyapunov exponent for both beams at n = 400, calculated using the 

methods of Kantz, Wolf, and Rosenstein. In order to avoid obtaining erroneous conclusions in the study of 

chaotic oscillations, the Lyapunov exponents are obtained by several methods. At present there is no reliable 

method for determining such. 

Table 2. Lyapunov exponent 

n  Beam 1 Beam 2 

method Wolf Rosenstein Kantz Wolf Rosenstein Kantz 

n = 400 Rk8pd 0.01658 0.05646 0.02191 0.02835 0.04617 0.02363 

 

All the values of the highest Lyapunov exponent, regardless of the method of solving the Cauchy problem, from 

the number of intervals of the beam partition, from the calculation algorithm are positive. That is, we are dealing 

with the true chaotic oscillations of the investigated beam structure. 

 

5. Conclusions 

 

In this article the reliability of the numerical results of the solution for the problem of the two beams contact 

interaction, described by the kinematic hypothesis of Tymoshenko, with a small gap between them, was given 

and defended. A comprehensive study of the nonlinear dynamics of the contact interaction of Timoshenko beams 

under action of a transversal alternating load. Selection number of points of partitions on the spatial coordinate 

(n = 400) and the choice of the method for solving the Cauchy problem (the Runge-Kutta method of the 8th 

order of Prince-Dormand) was justified. On basis of carried out research of frequency characteristics, we can talk 

about the phenomenon of chaotic frequency synchronization of beams vibration. 
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