X-ray Transition Radiation Produced by 2.8-GeV Electrons in a Multilayer Aluminum Target And Diffracted in a Silicon Crystal

 $A.V.Shchagin^{a,b}$, $A.S.Kubankin^{b,c}$, <u>R.M.Nazhmudinov</u>^{b,c,1}, S.V.Trofymenko^{a,d}, A.P.Potylitsyn^e, A.S.Gogolev^e, N.A.Filatov^e, G.Kube^f, N.A.Potylitsina-Kube^f, M.Stanitzki^f, R.Diener^f, A.Novokshonov^f

 $^a\,$ NSC "Kharkiv Institute of Physics and Technology", Kharkiv, Ukraine

 b Belgorod National Research University, Belgorod, Russia

 $^{c}\,$ P.N. Lebedev Physical Institute, Moscow, Russia

 $^{d}\,$ Karazin Kharkiv National University, Kharkiv, Ukraine

 $^{e}\,$ Tomsk Polytechnic University, Tomsk, Russia

^f Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

X-ray transition radiation (XTR) by relativistic charged particles is a promising tool for diagnostics of sub-micrometer size beams, required for future linear colliders. Also XTR can be used not only in accelerators. For example, in [1] XTR by 855 MeV electrons from a multilayer structure, diffracted in a Si plate, was investigated for the purpose of its application for X-ray phase contrast imaging. The use of a multilayer target increases the yield of transition radiation and a crystal allows extracting a narrow line with tunable energy from the continuous spectrum.

In the present work we study the XTR generated by 2.8-GeV electrons in a target of 32 Al foils with thickness of 13 um, diffracted on (111) plane of a Si crystal at the Bragg angle of 7.9 degrees, with the aim of applying it for the further study of its focusing by polycapillary X-ray optics. The XTR spectra are measured using Amptek XR-100SDD detector and contain a narrow peak with the energy of 14.4 keV. The study was performed at the Test Beam Facility TB21 of DESY [2]. The obtained results coincide well with the calculations.

The work was partially supported by AIDA within the European Union's Horizon 2020 research and innovation program under grant agreement No 654168.

References

^[1] M.El-Ghazaly et al. // Eur. Phys. J. A, 2006, vol. 28, p. 197.

^[2] R.Diener et al. // Nucl. Instrum. Methods A, 2019, vol. $\mathbf{922},$ p. 265.