
Introduction

Film flows of rheology of complex liquid occur in
many branches of modern industry – chemical techno�
logy, power engineering, petroleum derivatives trans�
portation and others. Methods of dipping and immer�
sion are used for coating components and products with
different covers and lubrications. At quick emptying of
bulbs and reservoirs of different functions, liquid films,
flowing down on their walls remain. Therefore, it is im�
portant to determine such films characteristics (thic�
kness, consumption, flow time, covering, remained on a
wall) subject to rheological liquid characteristics [1].

In most cases, real materials, being in viscoelastic
state, possess pronounced non�Newtonian properties,
such as nonlinear viscosity, plasticity and viscoelasticity.
Wrong accounting of rheological factors influence on
films motion at various technological devices mainten�
ance results in significant miscalculations.

At theoretical description of technological processes
of pigmented polymers conversion the question about
flow local laws, taking into consideration significant
rheological material characteristics arises. Existing flow
theories are often based on the model of nonlinear vis�
cosity or viscoplastic fluid. Such description is often not
too complete and does not include very significant non�
linear effects, discovered experimentally and connected
with presence of relaxation processes in liquid, such as
normal stresses appearance at shearing and residual
stress occurrence at flow stop, stream swelling at out�
flow from formative cap and liquid winding on rotating
rod (Weisenberg�effect) and others [2–5].

1. Statement of problem 

There are no universal determining equations for
describing rheology of complex liquid behavior, suitable
for all nonlinear materials, on the one hand and, on the
other hand, working satisfactorily in wide range of rates of
shear. Nonlinear effects are determined by material speci�
fic character, and it should be taken into account when
stating rheological equations of liquid dynamics. One of
the rheological models, describing rather well behavior of
extended polymer systems on the basis of linear polymers,
is the model, introduced by V.N. Pokrovskiy [6].

According to this model, the system of linear poly�
mers motion equations, except general stress equations
of motion and continuity equation, contains system of

determining equations, consisting of deviator stress ten�
sor definition

(1)

and relaxation equation

(2)

where xi is the Cartesian coordinates, ξij is the internal para�
meter, determining deformation degree of macromolecular
balls, t is the time, vi is the rate, δij is the identity tensor, σij is
the deviator stress tensor, k is the index current value, accor�
ding to which summation is performed, τ and η is the rela�
xation time and shear viscosity, which are supposed to be de�
pendent on applied voltages, and ratio [6] is performed

(3)

where τ0 and η0 is the initial viscosity and relaxation time
at D=0, p is the pressure. Rheological properties of fluid in
this model are determined by parameters τ0 and η0 values
and also, a certain steadily decreasing function f(D), which
is determined by experimental data and for linear poly�
mers it may be approximated, for example, by function [6]

(4)

where k is the coefficient, changing in the range
0,1...0,2; n is the index of nonlinearity.

Let us consider a problem of draining of nonlinear
viscoelastic fluid film, satisfying the model of V.N. Po�
krovskiy, on lateral surface of vertically installed straight
circular cylinder (fig. 1).

We suppose that film flow is considered to be deter�
mined, laminar and waveless. Lateral surface of cylinder
is retained at constant temperature t=t0, and environ�
ment temperature is t=te. In this case, sprinkled wall
curvature should be taken into account. Obviously, ca�
pillary forces, stipulated by crosscut curvature, are small
for major radius cylinders. Van Rossum [7] ascertained
that if Gouger number, that is determined as

(5)

larger than 1,8, capillary forces may be neglected in cal�
culations.

In ratio (5) ρ is the fluid density; g is the gravitation
acceleration; σ is the surface tension coefficient.
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Fig. 1. Geometric scheme of film flow: r , z – cylindrical coordi�
nates; Rc – cylinder radius; δ – thickness of flowing fluid
layer; Rδ=Rc+δ – distance to free surface

It follows from general considerations that at large va�
lues of generalized Prandtl number, typical for all rheology
of complex liquid, near sprinkled surface efficient tempe�
rature layer should be formed, where the main change of
temperature field occurs. In this layer the temperature
lengthwise the film changes much slower, than in its tran�
sverse direction. Therefore, when solving the system of
equations, describing the process of film flowing in the
conditions of heat exchanging, let us use the hypothesis of
quasi�stationarity, i.e. let us consider that every instant
temperature distribution at the moment conforms to its
own rates stationary distribution. Such supposition allows
us to solve hydrodynamic and heat problems separately.

Thus, subject to made suppositions, for solving the
formulated problem it is necessary to solve the system of
equations, written in cylindrical coordinate system
(z,r,ϕ), and consisting of motion equation

(6)

determining equations, obtained on basis of V.N. Po�
krovskiy’s model eq. (1–4) and connecting components
of deviator stress tensor with velocity gradient, which, in
this case, take the form:

(7)

(8)

and energy equation (9)

where а is the coefficient of fluid temperature conductivity.

Equations (6–9) are solved provided that adhesion
conditions on cylinder lateral surface are fulfilled and
wall temperature is constant

(10)

and on a free surface of the film (r=Rδ) conditions of
shearing stress σzr absence and heat flow q, determined
by Fourier law are given

(11)

Choosing cylinder radius – r=Rc, as length scale,
medium�consumed flowing rate – v=U as rate scale and
difference between cylinder wall temperature t0 and ini�
tial fluid temperature tж as temperature scale, let us wri�
te the initial equation system and boundary conditions
in dimensionless form.

(12)

(13)

(14)

(15)

(16)

(17)

where is the dimensionless temperature; Δ=δ/Rc

is the dimensionless film thickness; Re=ρURc/η0 is Rey�
nolds number; Fr=U 2/(gRc) is Froude number; We=τ0U/Rc

is Weissenberg number; Pe=URc/a is Peclet number.

Reynolds number to Froude number ratio, entering
to (12), is an important similarity parameter from hydro�
dynamic point of view which is denoted by W=Re/Fr [8].

Let us find the solution of hydrodynamic problem.

It is not difficult to show that using equations
(12–14) and the first from boundary conditions (17), we
may find the expression for shearing stress 

(18)

and obtain connection between velocity gradient and
stress tensor component σzr in form of

(19)

Substituting expression (18) into (19) we obtain
nonlinear differential equation of the first order for de�
termining velocity profile by film thickness. Since vz is a 

function only of r, partial derivative may be

exchanged to the total one.

(20)

Owing to nonlinearity of differential equation (20),
it is not possible to obtain its analytical solution. There�
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fore, this equation is solved numerically using the first
from boundary conditions (16). Energy equation, writ�
ten in a form of (15), is also solved numerically using ve�
locity field, obtained from equation (20) solution.

2. Results of calculation

The carried out numerical experiments allowed us to
find out flow parameters and rheological fluid characteri�
stics influence on velocity and temperatures profiles, as well
as to determine their influence on flowing film thickness Δ
at the given values of volume flow. To determine magnitude
Δ iterative process was plotted with the use of ratio

Dependence of flowing layer thickness of vicoelastic
fluid on Weisenberg number at different values of W pa�
rameter is presented in fig. 2.

Fig. 2. Dependence of layer thickness on We number at diffe�
rent values of W: 1) 5; 2) 50; 3) 100

It is seen from presented figure that film thickness
decreases both when We number rises and parameter W
increases. In this case, film thickness tends to a certain
stationary value while We increasing.

Dependence of maximum speed value in the same
range of parameters We and W changing is presented in
fig. 3.

Fig. 3. Maximum speed dependence on We number at diffe�
rent values of W: 1) 5; 2) 50; 3) 100

The presented results of calculation show that if film
thickness decreases with We and W parameters rise, ma�
ximal rate value, which is obtained on a free surface of
film increases. Fig. 4 illustrates velocity distribution on
film thickness subject to Weisenberg number (We).

Fig. 4. Velocity distribution on film thickness subject to We:
1) 50; 2) 100; 3) 150; 4) 200

As it is seen from the figure, Weisenberg number
increasing results in appreciable velocity increase. At
the same time the presented figure shows again that dra�
ining layer thickness decreases at We increasing. Veloci�
ty distribution for visoelastic fluid and its value also de�
pend on geometry or cylinder radius, on which liquid
flows. As numeric experiments showed, cylinder radius
increase at the condition of retaining of volume flow
constant value results in maximum speed falling and
draining film thickness decreasing.

Unlike nonlinear viscous and viscoplastic fluid, nor�
mal component of deviator stress tensor is not equal to
zero at viscoelastic fluid flowing. In this case, stress va�
lue does not depend essentially on We number.

The results of analysis of normal stress by film thic�
kness subject to We number are presented in fig. 5. From
the given figure it follows that normal stress distribution
by film thickness is of nonlinear character and with We
number increase, maximal value of normal stress, which
is obtained on cylinder wall, rises.

Fig. 5. Ddistribution of normal stress by film thickness subject
to We number: 1) 50; 2) 100; 3) 150; 4) 200 
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In this case, since layer thickness of flowing fluid ris�
es when We decreasing, distribution curve of normal
stress assumes more flat character.

Fig. 6. Distribution of temperature by film thickness subject to
Pe number in sections: z = 0,14 – 1) 0,0001; 2) 5; 3) 10;
4) 20; 5) 25; z = 0,75; 6) 0,0001; 7) 20

Numerical investigation of temperature field
showed that at chosen values of numbers Re=5.10–4,
Fr=3.10–7 and Peclet number (Pe), indicated in fig. 6,
Prandl number possesses really large values. From the

presented figure we can see that near sprinkled surface
temperature layer is formed, where the main change of
temperature field occurs. In this case, this layer thic�
kness occupies approximately one�third fraction of the
thickness of flowing layer of viscoelastic fluid. In this la�
yer temperature lengthwise the film changes more slow�
ly than in its transverse direction and with Pe number
increasing decreas of temperature gradient on film thic�
kness is observed.

3. Conclusion

Numerical solution of the problem on nonlinear vis�
coelastic liquid flowing on lateral surface of vertical cy�
linder is obtained. The influence of flow parameter and
fluid rheological characteristics on velocity and tempe�
rature profiles is showed, and also their influence on
draining film thickness at given values of volume flow is
determined. It is stated that near sprinkled surface ther�
mal boundary layer is formed in which the main change
of temperature field occurs. Thickness of this layer oc�
cupies approximately one�third fraction of the thickness
of flowing layer of viscoelastic fluid.
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