УДК 621.317.727.1

ИНДУКТИВНЫЕ ДЕЛИТЕЛИ НАПРЯЖЕНИЯ С СИММЕТРИРУЮЩЕЙ ОБМОТКОЙ

В.Л. Ким

Томский политехнический университет E-mail: sov@camsam.tpu.ru

В индуктивном делителе напряжения (ИДН), выполненном десятипроводным жгутом на ферромагнитном сердечнике, из-за неравенства эквивалентных емкостей, шунтирующих секции декадной обмотки, с увеличением частоты происходит резкий рост погрешности коэффициента передачи. Существенно снизить частотную погрешность (в 5 и более раз) возможно в ИДН с симметрирующей обмоткой (СО). Последний представляет собой сочетание бинарного делителя и пятисекционных обмоток, согласно последовательное соединение которых и образует декадную обмотку. При этом выравниваются эквивалентные емкости, и, следовательно, расширяется диапазон рабочих частот ИДН с СО.

Введение

Индуктивные делители напряжения обладают рядом высоких метрологических характеристик: точностью и стабильностью коэффициента переда-

чи
$$K_n = \frac{U_{abax}}{U_{ax}}$$
, где U_{abax} – выходное, U_{ax} – входное

напряжение делителя; малыми фазовыми погрешностями и выходным сопротивлением, недостижимыми в других типах делителей. Проектированию и применению ИДН в литературе уделено значительное внимание [1–4]. Наибольшее распространение получил декадный ИДН, который выполняется намоткой на тороидальный ферромагнитный сердечник многопроводного жгута, состоящего из десяти равномерно скрученных изолированных проводов. Назовем такой делитель индуктивным делителем первого типа – ИДН1. Относительная погрешность коэффициента передачи у ИДН1 в области средних частот 0,4...10 кГц равна 10-3...10-4 %. Однако в области верхних частот (свыше 10 кГц) погрешность резко возрастает. Частотная погрешность определяется неравенством эквивалентных емкостей, шунтирующих секции делительной обмотки. Известные способы выравнивания этих емкостей малоэффективны, так как ведут к ухудшению других характеристик ИДН1, например, к уменьшению входного полного сопротивления. Существенное снижение погрешности в области верхних частот 10...100 кГц достигается в ИДН с СО.

Основы теории ИДН с симметрирующей обмоткой

Делительная обмотка в ИДН с СО выполняется несколькими жгутами, содержащими одинаковое и разное число проводов.

Рассмотрим принципы построения ИДН с СО на примере декадного делителя [5]. На рис. 1 приведена принципиальная схема такого делителя. На ферромагнитном сердечнике размещаются пять делительных обмоток: симметрирующая обмотка L_1 , представляющая собой двоичный (бинарный) ИДН, и четыре отдельных пятисекционных обмоток L_2-L_5 . СО L_1 выполняется жгутом, состоящим из двух равномерно скрученных проводов. Дополнительные обмотки L_2 и L_4 выполняются из жгута, состоящего из десяти равномерно скрученных проводов. При этом из пяти проводов образуется обмотка L_2 , а из других пяти проводов – обмотка L_4 . Обмотки L_2 и L_4 включаются согласно и параллельно. Аналогичным образом выполняются обмотки L_3 и L_5 . Пары обмоток L_2 , L_4 и L_3 , L_5 соединяются согласно последовательно и образуют декадный ИДН.

Рис. 1. Принципиальная схема декадного ИДН с СО

На рис. 2, *а*, *б* приведены схемы замещения выходной части ИДН1 и ИДН с СО, составленные на основе известных распределений эквивалентных емкостей пяти- и десятисекционных обмоток [3]. Как видно из этих рисунков, у ИДН с СО наблюдается не только выравнивание эквивалентных емкостей, шунтирующих секции декадной обмотки, но и их существенное уменьшение.

С целью упрощения анализ точности ИДН в области верхних частот проведем при следующих допущениях:

- емкостные проводимости между обмотками и обмотками и сердечником равны нулю;
- индуктивности рассеяния секций обмоток равны между собой;
- все емкости между двумя проводами в жгуте одинаковы.

Рис. 2. Распределение эквивалентных емкостей секций в ИДН1 (а) и ИДН с СО (б)

Тогда выходные напряжения на отводах декадной обмотки ИДН можно рассчитать по формуле:

$$U_{\text{GbLX}_i} = U_{\text{ex}} \cdot \frac{i + (i - 1) \sum_{j=1}^{i} \Delta j}{1 + \sum_{j=1}^{i} \Delta j} \times \frac{1 + \sum_{j=1}^{5} \Delta j}{1 + \sum_{j=1}^{5} \Delta j} = U_{\text{ex}} K_n (1 - \delta K), \quad (1)$$

где i = 1, 2, 3, ..., 10 – номер отвода декады; K – относительная погрешность коэффициента передачи, $D_j = M_j \omega^2 L_s C_0$ – частотная погрешность *j*-й секции (j = 1, 2, 3, ..., 10). В формуле для частотной погрешности M_j – коэффициент при емкости C_0 соответствующей секции; C_0 – усредненная емкость между двумя проводами жгута; ω – круговая частота; L_s – индуктивность рассеяния секции.

Для ИДН1 расчеты по формуле (1) приводят к следующим выражениям:

$$U_{\text{BLXX}1} = 0,1 \cdot U_{\text{BX}} (1-12\Delta), U_{\text{BLX}2} = 0,2 \cdot U_{\text{BX}} (1-8\Delta), \\ U_{\text{BLXX}3} = 0,3 \cdot U_{\text{BX}} (1-4,7\Delta), U_{\text{BLX}4} = 0,4 \cdot U_{\text{BX}} (1-2\Delta), \\ U_{\text{BLX}5} = 0,5 \cdot U_{\text{BX}}, \\ U_{\text{BLX}6} = 0,6 \cdot U_{\text{BX}} (1+1,3\Delta), U_{\text{BLX}7} = 0,7 \cdot U_{\text{BX}} (1+2\Delta), \\ U_{\text{BLX}6} = 0,8 \cdot U_{\text{BX}} (1+2\Delta), U_{\text{BXX}7} = 0,9 \cdot U_{\text{BX}} (1+1,3\Delta), \\ \end{bmatrix}$$
(2)

где $\Delta = \omega^2 L_S C_0$.

Аналогично для отводов ИДН с СО получим

$$\begin{array}{c} U_{\text{BMX}1} = 0,1 \cdot U_{\text{BX}} \left(1 - 2\Delta\right), \ U_{\text{BMX}2} = 0,2 \cdot U_{\text{BX}} \left(1 - 0,5\Delta\right), \\ U_{\text{BMX}3} = 0,3 \cdot U_{\text{BX}} \left(1 + 0,3\Delta\right), \ U_{\text{BMX}4} = 0,4 \cdot U_{\text{BX}} \left(1 + 0,5\Delta\right), \\ U_{\text{BMX}5} = 0,5 \cdot U_{\text{BX}}, \\ U_{\text{BMX}6} = 0,6 \cdot U_{\text{BX}} \left(1 - 0,3\Delta\right), \ U_{\text{BMX}7} = 0,7 \cdot U_{\text{BX}} \left(1 - 0,2\Delta\right), \\ U_{\text{BMX}8} = 0,8 \cdot U_{\text{BX}} \left(1 + 0,1\Delta\right), \ U_{\text{BMX}9} = 0,9 \cdot U_{\text{BX}} \left(1 + 0,2\Delta\right). \end{array} \right)$$
(3)

Из сравнения выражений (2) и (3) видно, что у ИДН с СО значения погрешностей меньше, чем у ИДН1: у отвода 1 наблюдается уменьшение погрешности в 6 раз, а у отвода 2 – в 16 раз и т.д.

Входную емкость всего ИДН с СО можно считать равной сумме входной емкости СО и входной емкости четырех последовательно-параллельно соединенных пятисекционных делителей. Тогда входная емкость ИДН с СО определяется следующим образом:

$$C_{ex2} = 1,25C_0 + 0,4C_0 = 1,65C_0.$$

В то же время входная емкость ИДН1 равна

$$C_{\rm exl}=1,65C_0,$$

т.е. в этом случае $C_{ax2} = C_{ax1}$.

Экспериментальные исследования

Для экспериментальных исследований были изготовлены опытные образцы ИДН1 и ИДН с СО. При этом использовались тороидальные сердечники из пермаллоя 79НМ (магнитная проницаемость μ =120000, индукция насыщения B = 0.35 Тл) размерами 80×40×30 мм. Жгуты были выполнены из провода марки ПЭЛШО диаметра 0,25 мм, общее число витков – 400 ($L_s = 0.85$ мкГн, $C_0 = 300$ пФ). Метрологические испытания ИДН с СО и ИДН1 проводились методом сравнения с мерой – образцовым ИДН типа Р755. В качестве измерителя разности напряжений использовался дифференциальный указатель Ф7239. Измерения на средней частоте 1 кГц показали, что относительная погрешность ИДН с СО не превышала 3.10-4 %, что в 2 раза больше погрешности ИДН1. Это обусловлено неидентичностью параметров жгутов, из которых были выполнены обмотки L_2 , L_4 и L_3 , L_5 . В то же время экспериментальные исследования подтвердили существенный выигрыш по точности ИДН с СО на верхних частотах (см. таблицу).

Таблица. Расчетные и экспериментальные значения относительной погрешности К, % ИДН с СО и ИДН1 на частоте 100 кГц

		Коэффициент передачи К								
Тип ИДН		0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
ИДН1	расчетн.	-0,120	-0,080	-0,047	-0,020	0	0,013	0,020	0,020	0,013
	экспер.	-0,130	-0,060	-0,030	-0,025	0,005	0,015	0,025	0,022	0,013
ИДН с СО	расчетн.	-0,020	-0,005	0,003	0,005	0	-0,003	-0,002	0,001	0,002
	экспер.	-0,025	-0,008	0,002	0,003	0,005	-0,005	-0,004	0,002	0,003

Как следует из таблицы в ИДН с СО модуль максимальной относительной погрешности (при $K_n=0,1$) уменьшается в 5 раз. Это позволяет расширить частотный диапазон ИДН с СО приблизительно в 2 раза.

Результаты измерений подтвердили и другое важное преимущество ИДН с СО, обусловленное параллельным соединением обмоток L_2-L_5 , – меньшие значения (в 1, 1...1,5 раза в зависимости от номера отвода) выходных импедансов. Последние не превышали 5 Ом на частоте 100 кГц. Входная емкость ИДН с СО больше расчетной и, следовательно, входной емкости ИДН1 в 1,2 раза и равна 600 пФ. Расхождение расчетных и экспериментальных данных у ИДН с СО обусловлено идеализацией некоторых параметров ИДН с СО, указанных выше.

Заключение

Улучшение метрологических характеристик ИДН с СО достигается за счет использования трех жгутовых обмоток, что увеличивает расход по меди и несколько усложняет процесс изготовления делителей. Поэтому при создании многодекадного ИДН целесообразно применять ИДН с СО в качестве старшей декады, в основном определяющей точность всего устройства, а в качестве последующих декад – ИДН1.

В данной статье не рассматривались вопросы анализа случайной погрешности ИДН с СО, обусловленной стохастическими свойствами жгутов, их взаимодействием и влиянием сердечника. Эти и другие вопросы построения образцовых ИДН еще требуют детального исследования и будут предметом обсуждения последующих публикаций.

СПИСОК ЛИТЕРАТУРЫ

- Байков В.М., Рождественская Т.Б. Новые виды трансформаторных делителей напряжения // Измерительная техника. – 1972. – № 1. – С. 59–61.
- Гриневич Ф.Б., Грохольский А.Л., Соболевский К.М., Цапенко М.П. Трансформаторные измерительные мосты / Под ред. К.Б. Карандеева. – М.: Энергия, 1970. – 280 с.
- 3. Ройтман М.С., Калиниченко Н.П. Индуктивные делители напряжения // Измерения, контроль, автоматизация: Научно-

техн. сб. обзоров ЦНИИТЭИ приборостроения. — М., 1978. — Вып. 2(14) — С. 24—32.

- Ройтман М.С., Ким В.Л., Калиниченко Н.П. Кодоуправляемые прецизионные делители напряжения // Измерения, контроль, автоматизация: Научно-техн. сб. обзоров ЦНИИТЭИ приборостроения. – М., 1986. – Вып. 1(57) – С. 3–17.
- А. с. 1049991 СССР. МКИ³ Н01F 21/12. Индуктивный делитель напряжения / М.С. Ройтман, А.И. Крамнюк, Н.П. Калиниченко, В.Л. Ким. — Опубл. 23.10.83, Бюл. № 39. — 3 с.

УДК 621.384.6

ИСТОЧНИК МАГНИТНОГО ПОЛЯ С РЕГУЛИРУЕМЫМ ЗАКОНОМ РАСПРЕДЕЛЕНИЯ

Е.Т. Протасевич

Томский политехнический университет E-mail: lev@tpu.ru

Описан секционированный соленоид и схема управления шунтирующими сопротивлениями, которые обеспечивают выбор различных законов распределения магнитного поля на длине 1 м в аксиальном направлении с пределами изменения напряженности магнитного поля от 0,5 до 2,0 кЭ в начале линейного участка распределения.

Для повышения эффективности взаимодействия электронов в релятивистских СВЧ приборах и изучения новых методов ускорения заряженных частиц необходимо не только формирование магнитного поля с определенным законом распределения, но и возможность быстрого изменения в процессе работы исходного распределения. В частности, такая задача рассматривается при экспериментальном исследовании взаимодействии электронов с незамедленной Н-волной прямоугольного волновода в нарастающем магнитном поле [1, 2]. Для ее решения удобно использовать соленоид, состоящий из отдельных секций, которые подключены последовательно к источнику постоянного напряжения. Однако для изменения начального закона распределения магнитного поля в аксиальном направлении *z* необходимо осуществление регулировки токов в отдельных секциях. В этом случае система питания соленоида усложняется из-за необходимости использования дополнительных источников напряжения для каждой секции. Кроме того, размещение резонатора бегущей волны как основного элемента ускорителя требует компенсации провала магнитного поля в зазорах между секциями соленоида, между которыми размещается прямоугольный волновод [1, 2].