Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль <u>13.06.01 Электро- и теплотехника</u> <u>05.14.02 Электрические станции и электроэнергетические системы</u> Школа <u>Инженерная школа энергетики</u>
Отделение <u>электроэнергетики и электротехники</u>

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада	
Гибридное моделирование фазоповоротных устройств	
в электроэнергетических системах	

УДК 004.925.84:621.316.727:621.311

Аспирант

Группа	ФИО	Подпись	Дата
A6-42	Ставицкий Сергей Александрович		

Руководитель профиля подготовки

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Научный руководитель	Шутов Е.А.	к.т.н., доцент		
ООП				

Руководитель отделения

Должность	ФИО	Ученая степень, звание	Подпись	Дата
И.о. заведующего	Ивашутенко А.С.	к.т.н., доцент		
кафедрой – руководителя				
ОЭЭ на правах кафедры				

Научный руководитель

тау шып руководшель				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
	Сулайманов А.О.	к.т.н., доцент		

Одно из эффективных средств управления режимами работы электрических сетей, нашедшее достаточно широкое применение за рубежом – это фазоповоротное устройство (ФПУ). Основная функция ФПУ заключается в изменении распределения потоков мощности в неоднородной электрической сети для уменьшения потерь активной мощности, увеличения суммарной пропускной способности сети за счет предотвращения перегрузки одних связей и неполной загрузки других.

ФПУ в значительной степени изменяет и усложняет протекающие процессы в оборудовании и ЭЭС в целом. Вместе с этим усложняются условия работы и настройки средств релейной защиты и автоматики. В результате, получение полной и достоверной информации о процессах в оборудовании, включая ФПУ, и ЭЭС является актуальной задачей. При этом для получения данной информации служит преимущественно математическое моделирование, вызванное неприменимостью натурных испытаний и физического моделирования в силу сложности современных ЭЭС.

При математическом моделировании процессов в ЭЭС используется декомпозиция режимов и процессов ЭЭС, упрощения математических моделей оборудования, ограничение интервала воспроизведения процессов. Для ФПУ с быстродействующей системой регулирования (использование полупроводниковых ключей) с учетом непрерывности протекания процессов в ЭЭС наиболее приемлемо осуществление трехфазного бездекомпозиционного моделирования, при этом исключающее упрощения и допущения в применяемых средствах расчета режимов и процессов ЭЭС.

Многолетние исследования в Томском политехническом университете показали, что полное и достоверное воспроизведение процессов в трехфазном оборудовании и ЭЭС в целом может быть реализовано путем гибридного (программно-технического) моделирования, включающего в себя цифровой, аналоговый и физический способы моделирования.

Целью данной работы является разработка программно-технических средств адекватного моделирования в реальном времени процессов в ФПУ в ЭЭС в нормальных, аварийных и послеаварийных режимах работы.

Для достижения указанной цели поставлены и выполнены следующие задачи:

- 1 Синтез физико-математического описания процессов в ФПУ и в его системе автоматического управления;
- 2 Разработка структуры программно-технических средств бездекомпозиционного трехфазного непрерывного моделирования в реальном времени функционирования ФПУ в составе ЭЭС и гибридного процессора ФПУ;
- 3 Анализ и проведение исследований предложенных программнотехнических средств бездекомпозиционного трехфазного моделирования функционирования ФПУ в реальном времени.

результате выполнения диссертационной работы разработана универсальная физико-математическая модель ФПУ, позволяющая адекватно и с достаточной точностью моделировать процессы функционирования ФПУ при нормальных, аварийных и послеаварийных режимах работы ЭЭС, адаптированная для использования в средствах всережимного моделирования в реальном времени **ЭЭС** И также предложена eë реализация, представляющая собой специализированное программно-техническое средство адекватного моделирования ФПУ в ЭЭС (гибридный процессор ФПУ).