Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль 04.06.01 Химические науки, профиль 02.00.03 Органическая химия Школа ИШНПТ

Отделение НОЦ им. Н. М. Кижнера

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада	
Новые методы получения и биологически активные свойства пиоцианина	

УДК 661.124:577.181

Аспирант

Γ	Группа ФИО		Подпись	Дата
A	6-17			

Руководитель профиля подготовки

Должность	ФИО	Ученая степень,	Подпись	Дата
Проф.	Филимонов Виктор	звание д.х.н., проф.		
	Дмитриевич			

Руководитель отделения

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Заведующий кафедрой -	Краснокутская Елена Александровна	д.х.н., проф.		
руководитель	Тысквандровна			

Научный руковолитель

научный руководитель						
Должность	ФИО	Ученая степень,	Подпись	Дата		
		звание				
Проф.	Филимонов Виктор	д.х.н., проф.				
	Дмитриевич					

Актуальность темы. Появление антибиотикорезистентных бактерий закономерное явление, обусловленное способностью микроорганизмов к параллельному переносу генов. Следовательно, существует постоянная необходимость поиска новых веществ, обладающих противомикробной активностью.

Поиск новых антибактериальных веществ среди микроорганизмов продуцентов требует подхода с модификацией уже известных соединений.

Примером такого соединения является пиоцианин — природное производное феназина с эффективным механизмом действия. Пиоцианин легко образует активные форма кислорода, которые являются токсичными для бактерий, архей, плесени, простейших и опухолевых клеток. Таким образом, мы имеем перспективное соединение для использования в качестве антибиотика или противоопухолевого средства.

Пиоцианин производится продуцентом P. aeruginosa в небольших количествах, недостаточных для промышленного производства пиоцианина.

Целью работы было увеличение выхода пиоцианина в процессе культивирования синегнойной палочки.

Цель работы определила решение следующих задач:

построение кривой роста микроорганизма-продуцента;

оптимизация условий культивирования: температура, аэрация, освещение;

подбор компонентов питательной среды;

оптимизация процесса экстракции;

анализ полученного соединения.

Предметом исследования является технология получения пиоцианина микробным синтезом.

Объект исследования – процесс культивирования пиоцианина и сам пиоцианин.

Практическая значимость исследования - в зарубежной литературе достаточно много публикаций по антимикробным и противоопухолевым

свойствам пиоцианина, есть работы по исследованию состава питательной среды и исследование биосинтеза пиоцианина. В России практически отсутствуют работы на эту тему.

Результатом исследования может стать получение достаточного количества пиоцианина, необходимого для дальнейшего исследования его противоопухолевых и антибактериальных свойств, модификации структуры молекулы.

В первой главе обзор литературы по следующим темам: биосинтез пиоцианина и влияние компонентов среды на его выход. Подробно рассмотрены антимикробные и противоопухолевые свойства, механизм действия пиоцианина в клетке.

Во второй главе описаны материалы и методы исследования, использованные для достижения поставленных задач.

В третьей главе результаты представлены результаты исследования.

В заключении проводятся выводы о проделанной работе.

Список литературы:

- 1. Яковлев В.И. Технология микробиологического синтеза. Издательство "Химия", 1987 г. Л.: Химия. 1987. - 272 с.
- 2. Смирнов В. В., Киприанова Е. А. Бактерии рода Pseudomonas. Киев: Наук. думка, 1990. 264 с.
- 3. Mentel M., Ekta G., Mavrodi D., Of Two Make One: The Biosynthesis of Phenazines//ChemBioChem. 2009, 10, 2295
- 4. Kerr J. R., Taylor G. W., Rutman A. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth // J. Clin. Pathol 1999., 52., 385-387
- 5. Hassanein, W.A., Awny, N.M., El-Mougith The Antagonistic Activities of Some Metabolites Produced by Pseudomonas aeruginosa Sha8 // J. of Applied Sc. Research, 5(4), 2009., 404-414
- 6. Cheluvappa R., Shimmon R., Dawson M., Reactions of Pseudomonas aeruginosa pyocyanin with reduced glutathione // Acta Biochimica Polonica, 2008, 55, 571
- 7. Wa'ad M. R., In Vitro Study of the Swarming Phenomena and Antimicrobial Activity of Pyocyanin Produced by Pseudomonas Aeruginosa Isolated from Different Human Infections // European Journal of Scientific Research, 2010, 47, 405
- Stephen S. Baron, Grace Terranova, and John J. Rowe, Molecular Mechanism of the Antimicrobial Action of Pyocyanin// CURRENT MICROBIOLOGY, 1989, 18, 223
- Bioactive pigment production by Pseudomonas spp. MCC 3145: Statistical media optimization, biochemical characterization, fungicidal and DNA intercalation-based cytostatic activity
- 10.M. Laxmi, Sarita G. Bhat, Characterization of pyocyanin with radical scavenging and antibiofilm properties isolated from Pseudomonas aeruginosa strain BTRY1

- 11. Turner, J. M. and Messenger A. J., Occurrence, biochemistry, and physiology of phenazine pigment production// Advances in Microbial Physiology. 1986, 27, 211
- 12.Воробьева Л.И. Промышленная микробиология. М.: Изд-во МГУ, 1989. 284
- 13. Кузнецова М. В. Изучение биологических свойств клинических штаммов Pseudomonas aeruginosa при многократных пересевах и хранении. Медиаль: эпидемология, май, 2013. №2 С. 12-15 (6)
- 14. Досон Р., Справочник биохимика. М.: Мир, 1991. 544 с.