
1. Introduction

Mechanics of deformable body deals with functional
relations between the parameters characterising their
states and the external influence. Its objectives consist,
mainly, in establishing the changes in body geometry.

For most of the constructions the requirements for
hardness limit the value of form and size transformati�
ons of the elements forming them and, correspondingly,
by the notions of «small» and «large» the two appro�
aches are formulated in the geometry of deformation.
One distinguishes short (rigid) bars, whose physical res�
ource of material resilience is exhausted at «small»
changes in forms and sizes, and long (slender) ones, to�
lerating «large» changes in geometry at the same resour�
ce of resilience.

To define «small» changes a number of «guide rules
and lines» (the insufficient changes in form, the rule of
relative hardness, and the principle of unaltered initial
sizes) has been formulated, they form a concept system
of the «small displacements» or «small deformations»
theory, methods and techniques of which represent the
main content of «Strength of materials» course. Due to
functional connection between the load and «characte�
ristic displacement» in this theory there appears a divi�
sion of the system into linear and nonlinear ones, there
appears some terminological points: slightly curved axis
of bar is called as deflection curve, «exact form of curve
line» is called as elastics [1].

Approach to the problem on definition of deforma�
tion system geometry with long (slender) bars is charac�
terised by assumption that for its solution «it is impossi�
ble to apply the conventional theory of material
strength. One needs to design a completely different ap�
plied bending theory true for arbitrary large elastic dis�
placement and differed fundamentally from the con�
ventional theory beginning from the basic statements
and concepts» [2].

The main equations of deformation mechanics of any
form «have been reduced to the determining equations»
long ago [3] and by now «the theory of large displace�
ments, different from the conventional theory» exists [2],
there are some investigations [1, 4], that are distinguished
by complex transformations, reducing solution to special
functions without obvious physical relation of their vari�
ables with investigated elastic parameters.

It has been noted [3] that «deformation mechanics
consists not only of equations, but also of determinations
of exact physical meaning of all parameters and fun�
ctions included in these equations as well as equations
themselves». Evidently, owing to the absence of these de�
terminations the special theory without common
grounds and obvious connections with the conventional
theory has not become an engineering tool. In engine�
ering education the approximate «theory of small displa�
cements» prevails, but the results of separate problems
solution on the special theory are used to prove the res�
ults of the approximate theory and to demonstrate non�
linear behaviour of some systems at «small» changes [5].

The concept of fundamental difference of «short»
and «long» bars theory did not appear immediately [6].
Complexity of problem in its strict statement predeter�
mined the theory of «small» displacement, but its effec�
tiveness, meeting practical demands, moved aside from
scientific interest and engineering requirements and
prevented from development of their general theory to
some extent. 

Development of numerical methods and computer
engineering has created a new way of thinking with the
assumption that computerized analysis «with nonlinea�
rity, which occurs in solving practical problems connec�
ted with construction design, does not result in insur�
mountable difficulties» [5]. Program complexes have be�
en created that «can successfully be used for nonlinear
problems». However, it should be noted that modern
computer investigation is a multiple solution of linear
problem. Process without physical content does not en�
able to establish single�value truth connections. Obvio�
usly, potentials of such analysis should be estimated from
the viewpoint of its results. Undoubtedly, demands for
value of intermediate and final results are different. For
final results any form of presentation has an apparent va�
lue, for intermediate results analyticity (expression in
elementary functions) or possibility of their mathemati�
cal manipulation is more important in our mind. This
requirement is not a result of devotion to analytical ex�
pressions, i. e. a natural and necessary condition of phys�
ical interpretation of the phenomenon under study.

In mechanics of solid body deformation like in any
science there are many blanks which, covered by the de�
veloped concepts, remain the same for a long time.
S.P. Timoshenko pointed out [6] that «from time to ti�
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me it is necessary to discuss the main assumptions, on
which the methods of analysis are based». L.I. Sedov
noted [7] that «apparent establishing of common bases
and internal connections between different theories and
the effects observed allow deep understanding of real
scientific state, correct estimation of known and develo�
ped scientific achievements». Thus, the purpose of the
work is to reveal common and internal connections
between the two theories discussed.

2. Existent mathematical maintenance of the theory

For bars, elastically curved along plane curve, the
problem of its assignment is formulated by the Bernoul�
li equation

(1)

where К is the curvature, М is the bending moment, EJ
is the bar rigidity.

Curvature characterises the measure of line curve
and is defined as the rate of change in tangent inclina�
tion angle θ in the point at its motion along the curve L:

(2)

For the line specified by the equation y=f(x) curva�
ture parameters (2), expressed through corresponding
variables result in the known formula of mathematical
analysis:

(3)

With the expressions (2) or (3) the equation (1)
forms a nonlinear differential equation, by which the
problem of elastics id correctly formulated.

In this statement the problem was studied by Y. Ber�
noulli, L. Euler, and J.L. Lagrange, J.R. Kirchhoff,
А. Klebsh, B. Saint�Venant and many others.
J.R. Kirchhoff by 1859 [6] had stated the identity of the
equations for solid body rotation relative to fixed point and
the equations for bar equilibrium deformed by forces ap�
plied to its ends. At present «Kirchhoff’s dynamic analogy»
forms the basis of «the theory of small displacement» pres�
ented by the methods [2], that found some application [8],
but did not fit in traditional engineering courses.

The basis for the theory of «small displacements» is
«the method of curve lines, having insufficient deviation
from straight lines», suggested by L. Euler. The method
consists in change of exact curvature expression (3) by
simplified one:

(4)

L. Euler did not estimate his suggestion mathemati�
cally. Up to nowadays it is believed [9] that «having con�
fined himself by consideration of rather «small defor�
mations», he decided to take arc differential dL appro�
ximately as abscissa differential dx and thus transformed
the exact expression into approximate one». This state�
ment in this or that form is hitherto proved in educatio�
nal and engineering literature.

F.S. Yasinski [9], having expanded (3) in series,

estimated (4) in terms of residual series

to show that the curvature expression suggested by him

is more exact.

This approximate estimation and current explana�
tion of changes of (3) into (4) are not enough to have an
idea of limitation on values of determined displace�
ments and effects conditioned by the taken simplifica�
tion. The terms «method of curve lines, having insuffi�
cient deviation from straight lines» or «method of slight
displacements (deformations)» assume silently that va�
lue of displacements is determined in the coordinate sy�
stem connected with initial position of non�deformed
bar. However, curvature cannot be characterised by the
value of linear displacements. Thus, for example, for the
bar, curvature of which is determined by angular deflec�
tion of cross�sections, «large» displacements in x1y1 axis
system can be «small» in x2y2 system (Fig. 1).

Fig. 1. Displacements in curved bar

Evidently, simplified curvature expression (4) allows
the research in geometry of bar deformation with «lar�
ge» displacements, if its changes do not go beyond dis�
placements limits in other coordinate system.
«Slightness of deformation» is also connected with dis�
placement value; it is determined by the potential of
material elasticity. Deformation value can be judged on�
ly angular deflection of cross�sections: they are the sa�
me in any coordinate system.

3. Estimation of simplified curvature expression

Introduction of the expressions (4) into analysis of
deformation geometry is interpreted at apparent equiva�
lence for small angles tgθ≈sinθ≈θ as an assumption of
equality dL=dx in (2) or neglect of dy/dx value square in
comparison with a unit in (3). As arc differential of the
curve line is connected with abscissa differential by the
relationship dx=dL.cosθ, then the equality dx=dL can
be associated with assumptions

cosθ≈1 or  1/cosθ≈1.

In fact, (4) follows from (3), if one takes
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Let us transform the right part, substituting the deri�
vative in terms of its definition

We come to the conclusion that substitution of the
expression (3) into (4) is equivalent to introduction of
the assumption cos3θ=1 or 1/cos3θ=1. These assum�
ptions are cruder than it is suggested. There is a strict
correspondence between the curvature expressions

(5)

Application of simplified curvature expression K* le�
ads only to linearization of the differential equations (1),
the assumption dx=dL has got the other assignment.

4. Possible variants of curvature 

expression simplification

Simplified curvature expression K* is formally obtai�
ned by division of its exact expression K by the function
cos3θ. This mathematical operation increases curvature
and defines some line located from the side of its conca�
vity with respect to the true one. With this function�as�
sumption, applying multiplication, one can similarly
define the line of less curvature situated from another si�
de of the true line. Using weaker functions in significan�
ce cos2θ, cosθ, without overstepping the limits of as�
sumption introduced by L. Euler we obtain the curvatu�
re spectrum expression:

(6)

It includes the «refined» formula, suggested by
F.S. Yasinski [9]

One can say that F.S. Yasinski adopted a more strict
assumption and with multiplication he obtained his cur�
vature expression. L. Euler had chosen division before
him and used the function cos3θ.

Presentation of bar axis in pure bending (Fig. 2), de�
monstrates the effect of using different curvature ex�
pressions (6).

Fig. 2. Bar curvature depending on curvature expression

Fig. 3 shows the connection of stress and bending of
displaced end and the boundary between «small» and
«large» deformations, up to which the curvature expres�
sions (6) are defined by the curves close to each other.
Decreasing significance of simplifying function the dif�
ferential equation becomes more exact, and that boun�
dary (3 % in difference) is displaced to the direction of
large displacements.

Fig. 3. Connection of stress and angular deflection of bar cross�
section at different curvature expressions

5. Parametric form of curvature expression

Apart from physical meaning of elastics problems
that the Y. Bernoulli equation (1) imparts them, it is a
purely mathematical problem – «line reestablishment»
by the function of curvature change f(k)=(M/EJ).
Mathematics gives the definition of curvature (2) and its
coordinate expression (3), the assignment of which is to
state the curvature of functionally determined line. The
formulas (2) and (3) are not intended for solution of in�
verse problems, such problems are not considered in the
course of mathematics.

By the expressions (2) and (3) in parametric form [10]

(7)

the curvature is determined in the system of coordinates
by the rate of goniometric function change in tangent
inclination angle θ in a point when moving along the li�
ne. Here the tangent inclination angle is presented as a
basic parameter. The simplified expression acquire si�
milar form (4)

(8)

Fig. 4. Line reestablishment by curvature
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Curvature in these expressions has the signs, they
being determined by the change in corresponding fun�
ctions that are characterised by line curvature. Structu�
re of exact and simplified curvature expressions visualiz�
es connections and community of the two theories.

So, with the curvature function f1(k)=px (Fig. 4), with
the curvature expressions (7) and (8) the problem of line
reestablishment is formulated by the differential equations

(9)

(10)

Under initial conditions x=0, y=0, θ=θ0 from (9)
the equation of line for any curvatures follows:

(11)

For «small» deformations from (10) its equation:

(12)

Similarly, with the curvature function f2(k)=py
(Fig. 4) we state the equations of other curve:

(13)

(14)

It should be noted, in terms of curvature functions
and initial conditions, it is possible to define only the
equation of line. Elastics problems are boundary�value
ones. The range of point coordinates for the curved line
of finite length is limited by its projection of the coordi�

nate axis and it remains undefined. It is to be determi�
ned by solving the problem of defining arc length at the
indicated position of finite point. Such a problem is cal�
led a line «flattering» in mathematics. At its «large» and
«small» deformations it is formulated in the same way:

In the theory of «small» displacements it is not solved,
indefiniteness is removed by the assumption dx=dL,
which is equivalent to L=xL. L.I. Sedov [7] determined
this assumption as «linearization of boundary conditions».

Fig. 5 presents «elastics» in terms of the equations
(11, 13) and «deflection curves» in terms of (12, 14) of
the bar with EJ hardness at curvature by concentrated
stress Р. Hence, in the curve equations p=P/EJ. Diffe�
rent kinds of deformation are formed by pointing out
the position of end cross�section.

Determining deformation geometry of bars presen�
tation of two problems («reestablishment» and «flatte�
ring» of line) as one sometimes makes difficult to inter�
pret the solution and can result in incorrect conclu�
sions. Let us show this by the solution of «Euler’s pro�
blem» (the bar with two joint as supports in Fig. 5).

By the expressions (14) periodic curve is determi�
ned. Having pointed out the position of end cross�sec�
tion x=xL, θ=–θ0, from them we obtain y=0, xL√

–
p=π.

Reducing them to the form

we define it by the equation in coordinate form:

(15)

The curve is sinusoid with the amplitude
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Fig. 5. Kinds of deformation determined by one curve



At «small» deflection» in the assumption L≈xL one
half�wave is isolated from it.

Solution of the L. Euler’s problem has formed the con�
cept on existence of a number of buckling loads [5]. The equ�
ation (15) with indefinite deflection in its solution assumes
interpretation of sin(x√

–
p)=0 as x√

–
p=nπ, and coefficient р of

the curvature function is takes as a cause for multiplicity.

Conclusions

In elastics problems of curved bars the functions of
curvature change formulated by stresses are usually co�
ordinate ones. The questions of agreement of these fun�
ctions with curvature expressions conditioned appea�
rance of two theories. Its agreement with the curvature

expression (2) leads to the theory of «large» displace�
ments with corresponding specific character of problem
solution through «Kirchhoff’s dynamic analogue». Its
agreement with the expression (3) simplified in terms of
(5) for «linearization of differential equations» and as�
sumption dL=dx for «linearization of boundary condit�
ions» results in the theory of «slight» displacements with
«rules and principles», the main point of which is ex�
pressed by the performed assumptions. Their indistinct
interpretation formed a supposedly strict difference
between the theories. Parametric curvature expressions
(exact and simplified ones) in coordinate form remove
the questions of agreement with its function of change
and show conditionality and irrationality of the concept
of fundamental difference of the two theories.
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