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Introduction

As it is known [1], distribution on differentiated va�
riety Mp represents one of essential sections of differen�
tial�geometrical structures. One of the main problems
of linear m�dimensional subspace (m�planes) distribu�
tion Lm in n�dimensional homogeneous space is the pro�
blem of invariant equipment. In n�dimensional Euclidi�
an space En this problem becomes trivial as with each m�
plane Lm associates equipping (normal) (n–m)�plane
Pn–m⊥Lm. Therefore there is a problem of full attraction
of geometrical properties of pair fields of corresponding
linear subspaces Lm and Pn–m in En.

The given work is devoted to studying of Δ1
n–m:M→Lm

distribution of m�planes Lm in En (m>2, n–m>2), where
M∈En. Two�dimensional planes L2

1⊂Lm and P2
1⊂Lm, passing

through the point A are compared to each point M∈En. A
special attention is paid to displays of planes L2

1 and P2
1.

The first item is devoted to the analytical device
which is applied in all other items at distribution
Δ1

n,m:M→Lm studying. In item 2 displays Ft:L2
1→P2

1 and
F~t:P2

1→L2
1 are studied at each fixed direction t, which are

defined by corresponding two functions of two argu�
ments. In item 3 cases when displays Ft and F~t are analy�
tical, i. e. functions defining them satisfy conditions of
Cauchy�Riemann [4. P. 188–189]. In the same item
cases of interrelations between numbers m and n are
considered when fields of bidimentional planes L2

1⊂Lm

and P2
1⊂Lm are defined by invariant image at the assum�

ption that displays Ft and F~t are analytical.

All considerations in the given work have local cha�
racter, and the functions occurring in the work are assu�
med analytical.

Designations and terminology correspond to acce�
pted in [1–6].

The results stated in items 1–3 for the general distri�
bution Δ1

n,m in En (m>2, n–m>2) belong to E.T. Ivlev, in

the item 3.2 at n=6, n=m+4 and m=4 belong to
A.S. Pshenichnikova, at n≤7 – to V.K. Barysheva.

1. Analytical device 

1.1. Distribution Δ1
n,m

The n�dimensional Euclidian space En is considered.
It is attributed to mobile orthonormal reference point
R={A

–
,ei
–}, (i,j,k,l=1,n

⎯
) with derivational formulas and

structural equations

(1)

where 1�forms ωi
k satisfy correlations:

(2)

following from orthonormality conditions of reference
point R:

(3)

Here and in the further the symbol �x–;y–� designa�
tes scalar product of vectors x–,y–∈En.

In space En we shall set distribution

(4)

where M is the current point of space En belonging to
corresponding m�plane Lm.

To distribution (4) we shall attach orthonormal refe�
rence point R={A

–
,ei
–} so that

(5)

Here the symbol Lp=(B
–

,x1
–,x2

–,...,xp
–) means p�dimen�

sional plane in Lp⊂En, passing through the point B∈En
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in parallel linearly to independent vectors  x1
–,x2

–,...,xp
– of

Euclidian space En. From (5) by virtue of (1) follows,
that distribution (4) is defined by differential equations:

(6)

where components Aαl
αi of internal fundamental geomet�

rical object

(7)

of the first order of distribution Δ1
n,m in G.F. Laplas’ sen�

se [2] satisfy to differential equations:

(8)

Here and in further the operator ∇ means the following:

(9)

From (5) and (1) by virtue of (3) follows, that
(n–m)�plane is defined in each point A∈En

(10)

The next distribution is associated with this
(n–m)�plane

From (2) and (6) we obtain

(11)

Let’s notice in view of (5) and (10), that in local co�
ordinates xi of reference point R linear subspaces Lm and
Pn–m are defined by the equations, accordingly:

(12)

1.2. Fields of two�dimensional planes L2
1⊂Lт and P 2

1⊂Pn–m,

passing through corresponding points A∈En

On space En as on differentiated variety we shall set
fields of geometrical objects

(13)

the components of which satisfy the differential equations

(14)

From (5) and (10) in view of (12) – (14) follows,
that in each point A∈En geometrical objects g1 and g2 de�
fine orthogonal two�dimensional planes L2

1⊂Lт and
P 2

1⊂Pn–m, passing through the point A:

(15)

Here corresponding linearly independent vectors  ε–α1

and ε–α2
are defined under the formulas:

(16)

Remark 1.1. From (15) by virtue of (13), (10), (5) and
(3) we notice, that in each point A∈En perpendicular linear
subspaces L2

m–2⊂Lm(L2
1⊥L2

m–2) and P 2
n–m–2⊂Pn–m(P2

1⊥P 2
n–m–2),

passing through point A, are defined:

(17)

where

(18)

at that

(19)

2. Display of L2
1 and P 2

1 planes

2.1. Fields of some geometrical objects

By means of components of geometrical objects (7)
and (13) to the point A∈En we shall set in conformity
the following values:

(20)

which by virtue of (11), (8), (9), (13), (14) and (19) sa�
tisfy the differential equations:

(21)

Here

at that the obvious view values standing at ω j is insigni�
ficant for us.

From (20), (21), (8) and (7) we notice that on vari�
ety En fields of the following geometrical objects in
G.F. Laptev’s sense [2] are ascertained:

(22)

In the following item the displays of planes L2
1 and

P 2
1 will be studied, which are associated with fields of ge�

ometrical objects (22).

2.2. Displays Ft:L2
1→P2

1 and F
~

t:L2
1→P2

1

The curve k(t) passing through the point A∈En and
defined by the parametrical differential equations, is
considered:
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where values ti at fixed main parameters, i. e. at ω i=0,
satisfy conditions:

Here πi
j=ωi

j|ω j=0, δ is a symbol of differentiation by
secondary parameters [2], [3], at that θ

0

1=θ1|ω j=0.

From (1) by virtue of (23) we notice that the line

(24)

with directing vector t
–
, passing through the point A, is

the tangent to the curve k (t) in the point A. Further ac�
cording to (23) and (24) we shall consider that displace�
ment on the curve k(t) is equivalent to displacement in
the direction t.

Point A∈En we shall compare with points X∈L2
1⊂Lm

and Y∈P 2
1⊂Pn–m that have radius�vectors:

(25)

From (23)–(25) in view of (1), (15), (16) and (12)
we obtain:

(26)

Here the symbol (...) designates insignificant values.

From (26) in view of (20), (5), (10), (12), (15)–(19)
we notice that in each point A∈En the following displa�
ys are ascertained:

(27)

corresponding to the direction (24). Geometrically each
of the displays (27) is characterized as follows:

(28)

Here the symbol T(Z)t designates a tangent to the li�
ne (Z)t, described by the point Z along the curve (23) or
along the direction (24). We shall notice that in (28) it is
supposed, that points X∈L2

1⊂Lm and Y∈P 2
1⊂Pn–m are not

focuses of linear subspaces Lm and Pn–m along the curve
k(t) in sense [5].

3. Analytical displays of L2
1⊂Lт and P 2

1⊂Pn–m planes

3.1. Displays Fta and F
~

ta

Let the following display answer each point A∈En:

(29)

where functions ψ α2(x1;x 2) are at least twice continuo�
usly differentiated on a plane L2

1.

Definition 3.1. Display ψ :L2
1→P2

1 is called analytical and
designated as ψa, i.e. ψ→ψa, if defining it functions (29) sa�
tisfy to Cauchy�Riemann conditions [4. P. 188–189] on the
plane L2

1:

(30)

From (27) we notice that at each fixed direction
t=(A

–
,ei
–)t i each display (27) is defined by two correspon�

ding functions of two arguments. Therefore according
to the definition 3.1 from (30) and (27) we obtain, that

(31)

(ti is fixed).

The following theorems take place.

Theorem 3.1. Display Ft:L2
1→P2

1 corresponding to a
point A∈En, will be a display of Fta at each fixed t∈En

then, and only then, when display F~t:L2
1→P2

1 will be a dis�
play of  F~ta.

The proof of this theorem follows in view of (31),
(11), (19) and (20) that

(32)

Theorem 3.2. To each pair two�dimensional planes
L2

1⊂Lm and P 2
1⊂Pn–m in point A∈En in general case, i. e.

in case, when a rank of a matrix

(33)

in the point A is equal to 2, corresponds (n–2)�plane

passing through point A.

Proof of this theorem follows from (31) in view of the
theorem 3.1 and parities (32).

Remark 3.1. In view of (31) and (32) and the theo�
rem 3.1 the (n–2)�plane (33) is actually defined in local
coordinates of orthonormal reference point R by the
equations:

(34)

3.2. Existence of two�dimensional planes L2
1⊂Lт and

P 2
1⊂Pn–m in general case at certain values m and n, when

Ft→Fta⇔F
~

t→F
~

ta

The following theorems take place.

Theorem 3.3. To each point A∈En in general case
corresponds at n<7 uncountable and at n=7 – final
number of corresponding pairs of planes L2

1⊂Lm and
P 2

1⊂Pn–m such, that
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(35)

at all directions t, belonging to some hyperplane Гn–1.

Proof. From (15) follows that in each point A∈En

planes L2
1⊂Lm and P 2

1⊂Pn–m are defined by components of
geometrical objects (13), number of which is equal, ac�
cordingly:

(36)

From (34) follows that planes L2
1 and P 2

1 are talked
about in the theorem 3.3, in the only case when the rank
of the matrix (33) is equal to 1, i. e., when in view of (20)
values gα1

αl1 and gα2

αl2 satisfy the algebraic equations:

(37)

From (36) follows that unknown gα1

αl1 and gα2

αl2, which
number is equal to

m1+m2=2(n–4),

satisfy n–1 the algebraic equations (37) in each point
A∈En. Therefore the statement 1, the one we are talking
about in this theorem, is fair.

Let’s prove validity of the statement 2.

Let’s consider Jacob’s matrix of the system (37):

(38)

Let’s calculate the rank of the matrix (38) at gα1

αl1=0,
gα2

αl2=0. From (38) and (37) by virtue of (19) and (20) we
notice that the matrix (38) has a determinant (minor) of
the sixth order

(39)

Here indices possess values:

and values Pb
~

b are defined under the formulas:

(40)

From (40) follows that the determinant (39) in the
general case in the point A∈E7 is not equal to zero. It
means that the rank of the matrix (38) in the general
case is equal to 6. Therefore the system (37) consists of
6 algebraic equations and therefore hy has final number
of solutions relatively to gα1

αl1 and gα2

7 .

Theorem 3.3 is proved.

Theorem 3.4. To each plane L2
1 in a set point A∈Lm at

n=6 one plane P 2
1 corresponds so, that (35) takes place

at ∀t∈L2
1.

Proof. Three cases are possible at n=6.

1. m=2, n=6.
In this case with respect to (5), (10), (13) and (15)

we have

Therefore the parity (35), ∀t∈L2
1 in view of (34) will be

carried out only in the case when values gα2

αl2=–gαl2

α2, number
of which is equal to 4, satisfy the following system 4 of li�
near in the general case non�uniform equations:

(41)

It is possible to show that the main determinant of the
fourth order of the system (41) in point A is not equal to
zero identically. Therefore the system (41) in general case
in point A allows the only decision regarding   gα2

αl2.

2. m=3, n=6.
In this case indexes accept the following values:

at that

(42)

Let’s consider that in a point A∈E6 a plane L2
1 is set.

According to (42) we shall lead such canonization of re�
ference point R, at which

(43)

which by virtue of (14) leads to the differential equa�
tions

It means that the specified fixing of reference point
R exists according to [6].

From (34) in view of (43) and (20) we shall conclu�
de that (35), t=(A

–
,e3
–), (xα1=0,xαl=0) takes place in only

case when two values g6
α2=–g 6

α 2
satisfy the following two

in the general case linear non�uniform equations
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l l

l l

l l

1 2

1 2

1 11 1

2 22 2

;

7; 1,6; , 1,2; , 3,4;
.

, 5,6; , 7

b bV V
g g

n b

α α
α α

α β α β

α β α β

⎡ ⎤∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

⎛ ⎞= = = =
⎜ ⎟
⎜ ⎟= =⎝ ⎠

2 1 1 2
1 2 1 2

2 1 1 2
1 2 1 2

( )( )

( )( ) 0,

( 1, 1).

m m m m
b n n b b

m m m m
b b n n

V G G G G
G G G G

b n

+ + + +

+ + + +

≡ + − −

− + − =

= −

1 1
2 1 2 2: 2( 2); : 2( 2).L m m P m n m= − = − −

t tàF F→
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The main determinant of the second order of this
system, as it is easy to see, is not equal identically to ze�
ro in the point A. Therefore the system (44) has the on�
ly solution regarding g6

4 and g6
5.

3. m=4, n=6.
In this case

Thus the plane P 2
1 is considered to be set, and the

plane L2
1 – defined. Hence, the case 3 is formally the sa�

me, as well as the case 1.

Theorem 3.4 is proved.

Theorem 3.5. To each point A∈En at n=m+4 {at
m=4} in general case corresponds the number of corres�
ponding planes L2

1⊂Lm {P 2
1⊂Pn–m} so, that (35) takes pla�

ce at ∀t∈Lm {∀t∈Pn–m}.

Proof. From (34) in view of (36), (5), (10), (12) and
(15) follows that (35) takes place at ∀t∈Lm⇔t αl=0
{∀t∈Pn–m⇔t α=0} in only case when values sizes
gα1

αl1=–gαl1

α1 and gα2

αl2=–gαl2

α2 satisfy the following nonlinear
algebraic equations:

(45)

Here values Gα i

αl are defined under the formulas (20).

From (34) and (36) it is possible to conclude that
each system (45) contains identical number
m1+m2=2(n–4) of unknown gαl1

α1 and gαl2

α2 and equations
in the following corresponding cases:

The Jacob’s matrix of the system (45) is considered

(46)

Calculating the rank of the matrix (46), for example,
at gα1

αl1=–gαl1

α1=0, gα2

αl2=–gαl2

α2=0, we are convinced that the
matrix (46) has the following nonzero minors in corres�
ponding cases:

1) n=m+4.

2) m=4.

As in the case of 1) {2)} the minor of the order
2m{2(n–m)} in the general case in point A is not equal
to zero identically, then the rank of the matrix (46) in
corresponding case is equal to 2m{2(n–m)}. It means
that the system (46) in each case consists of algebraical�
ly independent equations, and therefore assumes the fi�
nal number of solutions regarding rather gα1

αl1 and gα2

αl2.

Theorem 3.5 is proved.

Remark 3.2. Association of cases n=m+4 and m=4
of the theorem 3.5 leads to the case m=4; n=8, i. e. to
distribution Δ1

8,4 in E8.

l l l l l l l l

l l l l l l l l

l
�

� l
l

l

3 4 3 4 2 2 1 1
2, 2, 1, 1, 3, , 3, ,

3 4 3 4 1 1 2 2
1, 1, 2, 2, 3, , ,3,

... ...
det

... ...

; 1, are the numbers of the first  lines;

1,

m m m m m n m m n m

m m m m m n m n mm

A A A A A A A A

A A A A A A A A

A A m n n m

m

α α α α α α α α

β β β β β β ββ

γ γ
γ β γ β

α

β

+ + + + + − + −

+ + + + + − −+

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎣ ⎦

= − = + −

= +
.

are the numbers of the next  linesn n m

⎛ ⎞
⎜ ⎟
⎜ ⎟−⎝ ⎠

3 4 3 4 2 2 1 1
2 2 1 1 3 3

3 4 3 4 1 1 2 2
1 1 2 2 3 3

... ...
det

... ...

1, are the numbers of the first  lines;

1, are the numbers of the next  li

m m m m m m m m
m m

m m m m m m m m
m m

A A A A A A A A

A A A A A A A A

m m

m m

α α α α α α α α

β β β β β β β β

α

β

+ + + + + + + +

+ + + + + + + +

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦

=

=
.

nes

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

l l l l1 2 1 2

1 2 1 2

; ; ; .ñ ñ ñ ñ

g g g gα α α α
α α α α

ϕ ϕ ψ ψ⎡ ⎤∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

l( 0) 4 è 1, ,

( 0) 4 è 1, .
m

n m

t L t n m c m

t P t m c m n

α

α
−

∀ ∈ = ⇒ = + =

∀ ∈ = ⇒ = = +

1 2
1 2

2 1
1 2

0;

0,

( 1, ; 1, ).

m m
ñ c c

m m
ñ c c

m n m

G G
G G

c m t L c m n t P

ϕ

ψ

+ +

+ +

−

⎧ ≡ − =⎪
⎨

≡ + =⎪⎩
= ⇐ ∀ ∈ = + ⇐ ∀ ∈

l
l

2 2

2 2

1
5 62 6 4 2 ( , , ) 0.P P P A e e g g αα

α α−= = = ⇔ = − =
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