ОПРЕДЕЛЕНИЕ ЭНЕРГЕТИЧЕСКОЙ СТРУКТУРЫ И СПЕКТРОСКОПИЧЕСКИХ ПАРАМЕТРОВ КОЛЕБАТЕЛЬНОГО СОСТОЯНИЯ (v5=v12=1) МОЛЕКУЛЫ С2D4

М.А. Меркулова

Научный руководитель: профессор, к.ф.-м. н. О.В. Громова Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: <u>mam36@tpu.ru</u>

DETERMINATION OF THE ENERGY STRUCTURE AND SPECTROSCOPIC PARAMETERS OF THE VIBRATION STATE (v5=v12=1) OF C2D4 MOLECULE

M.A. Merkulova

Scientific Supervisor: Prof., PhD, O.V. Gromova Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: mam36@tpu.ru

Abstract. For the first time, high-accurate Fourier-transform infrared spectra of the C_2D_4 molecule were recorded and analyzed in the region of 3300-3500 cm⁻¹ where v_5+v_{12} band is located. The 529 ro-vibrational energies of the ($v_5=v_{12}=1$) vibrational state are reproduced by set of 12 fitted spectroscopic parameters with the $d_{rms}=0.0013$ cm⁻¹.

Введение. Молекула этилена и ее изотопологи интенсивно исследуются экспериментаторами и теоретиками на протяжении последних десятилетий. Как простейший алкен этилен представляется молекулой-прототипом для исследования углеводородов. В связи с этим, информация о внутренних свойствах данной молекулы позволяет более подробно рассмотреть вопрос о взаимосвязанных спектрах, динамике и потенциальных гиперповерхностях многих органических молекул [1]. Знание точного вида внутримолекулярной потенциальной функции молекулы необходимо для изучения проблем динамики химических реакций [2], фрагментации молекул под воздействием излучения [3], моделирования колебательной структуры и идентификации молекул. Последнее невозможно без знания точной спектроскопической информации о вращательных структурах колебательных полос различных изотопологов этилена, в том числе его дейтерированных модификаций [1].

В связи с вышесказанным, целью работы является анализ колебательно-вращательного спектра высокого разрешения молекулы C_2D_4 в диапазоне 3300-3500 см⁻¹, в котором локализована сильная комбинационная полоса поглощения v_5+v_{12} .

Теоретическая модель исследования. Определение энергетического спектра молекулы при квантовомеханическом рассмотрении подразумевает под собой нахождение собственных значений *E* оператора энергии молекулы. Знание собственных функций позволяет определить вероятность переходов, рассчитать средние значения физических величин, характеризующих молекулу, и многое другое. В рамках данной работы используются два приближенных метода решения уравнения Шредингера: приближение Борна-Оппенгеймера и метод эффективных гамильтонианов. Как следствие, при решении обратной спектроскопической задачи, в качестве оператора Гамильтона используется

эффективный гамильтониан, имеющий вид оператора Уотсона для изолированного колебательного состояния (см., например, [1]).

Результаты и обсуждение. Спектр молекулы C_2D_4 был зарегистрирован в диапазоне длин волн от 3300 до 3500 см⁻¹ с помощью Фурье-спектрометра Bruker IFS 125 с разрешением 0.0025 см⁻¹, в основе работы которого лежит принцип интерферометра Майкельсона. Спектр был записан при следующих экспериментальных условиях: давление образца – 105 Па; оптическая длина пути – 24 м; количество сканирований – 500. Зарегистрированный спектр представлен на рис. 1, центр полосы \approx 3386 см⁻¹.

Рис. 1 - Спектр молекулы C_2D_4 в диапазоне 3300-3500 см⁻¹

Исследуемая полоса является полосой *b* типа и имеет следующие правила отбора: $\Delta J = 0,\pm 1, \Delta K_a = \pm 1, \pm 3,...$ и $\Delta K_c = \pm 1\pm 3,...$ [4]. Для интерпретации спектра был использован метод комбинационных разностей [5]. Информация об энергетических уровнях основного колебательного состояния была получена из работы [6]. В качестве наглядного примера проведенной интерпретации на рис. 1 (b) и (c) можно наблюдать структуру *R* ветви исследуемой полосы.

В результате работы с помощью метода комбинационных разностей проинтерпретировано 2080 колебательно-вращательных переходов, соответствующих 529 энергиям до $J^{max} = 22$ и $K_a^{max} = 12$. В результате решения обратной задачи впервые получены спектроскопические параметры колебательного состояния (v₃=v₁₂=1), которые позволяют воспроизводить колебательно-вращательные уровни энергий с точностью 0.13·10⁻² см⁻¹. В качестве иллюстрации часть найденных переходов представлена в таблице 1. Полученный набор из 12 спектроскопических параметров, обусловленный 177 уровнями, представлен в табл. 2.

129

130 XVII МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Таблица 1

J K _a K _c	$J' K_a' K_c'$	Переход, см ⁻¹	Пропускание, %	Энергия, см ⁻¹	Среднее значение, см ⁻¹	δ · 10 ⁻⁴ , см ⁻¹
1	2	3	4	5	6	7
12 9 3	11 8 4	3250.3321	52.1	3450.7964	3450.7963	1
	12 10 2	3170.4201	58.2	3450.7964		
	13 10 4	3153.4827	63.3	3450.7963		
13 9 4	12 8 5	3251.5536	55.1	3467.6702	3467.6701	-3
	13 10 3	3170.3564	83.5	3467.6701		
	14 10 5	3152.1095	66.2	3467.6697		
11 10 1	10 9 2	3253.1920	56.8	3469.6828	3469.6826	2
	11 11 0	3167.4468	94.0	3469.6824		
	12 11 2	3151.8256	68.9	3469.6825		
12 10 2	11 9 3	3254.4283	59.8	3485.2493	3485.2491	2
	12 11 1	3167.3919	91.7	3485.2489		
	13 11 3	3150.4645	71.5	3485.2490		

Часть переходов, соответствующих полосе v₅+ v₁₂ молекулы C₂D₄

Таблица 2

Спектроскопические параметры колебательного состояния (v₅=v₁₂=1) молекулы C₂D₄

Параметр	$(v_5 = v_{12} = 1) C_2 D_4, \text{ cm}^{-1}$	Параметр	$(v_5 = v_{12} = 1) C_2 D_4, \text{ cm}^{-1}$
1	2	3	4
E	3386.14881(69)	$\Delta_J \cdot 10^4$	0.01156(86)
A	2.46485(25)	$H_J \cdot 10^8$	0.105(23)
В	0.737601(80)	$L_{JJK} \cdot 10^{11}$	-0.87(11)
С	0.562587(93)	$P_{K} \cdot 10^{11}$	-0.2370 (62)
$\Delta_K \cdot 10^4$	0.4648 (28)	$P_{KKJ} \cdot 10^{11}$	0.2407 (37)
$\Delta_{JK} \cdot 10^4$	0.0049(13)	$\delta_J \cdot 10^4$	0.0064(16)

СПИСОК ЛИТЕРАТУРЫ

- Ulenikov O.N. et al. High resolution analysis of C₂D₄ in the region of 600 1150 cm⁻¹ // Journal of Quantitative Spectroscopy & Radiative Transfer 182. – 2016. – P. 55 – 68.
- 2. Аминова Р.М. и др. Поверхности потенциальной энергии молекулярных систем. Квантовохимические методы анализа ППЭ: учебно-методическое пособие. – 2009.
- 3. Тулуб А.В., Симон К.В. Фрагментация молекул под воздействием мгновенного возмущения на примере молекулы пропана // Оптика и спектроскопия. 2007. Т. 102., №. 2. С. 219-226.
- O.N.Ulenikov et al. High resolution analysis of C₂D₄ in the region of 600 − 1150 cm⁻¹ // Journal of Quantitative Spectroscopy & Radiative Transfer 182. − 2016. − P. 56 − 57.
- 5. А.П. Щербаков и др. Спектральный логический обработчик для научных работников. Программный комплекс // Институт оптики атмосферы СО РАН. Томск, 2013. 37 с.
- Rothman L.S. et al. The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 // J. Quant. Spectrosc. Radiat. Transf. – 2003. – V. 82. – P. 50 – 67.