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Abstract  

Silver nanoparticles (AgNPs) are synthesized from the root extract of the Abutilon indicum plant. Nitrate reductase enzyme and/or 
other extra cellular proteins released from the extract reduce the silver nitrate to silver ions. These proteins or enzymes serve as a 

template for the silver nucleation sites in the development of silver nanoparticles, and also act as capping agents, preventing silver 

ion agglomeration. XRD analysis predicts the phase of the nanoparticles. Transmission Electron Microscope (TEM) and Scanning 

Electron Microscope analyses have revealed that the synthesized AgNPs are spherical in shape, with an average size of 17 nm. 

From the data, it is noted that the protein molecules and fatty acids present in the root extract of Abutilon indicum, play a vital role 

in reducing silver salts and as capping AgNPs at various concentrations. Bactericidal activity acting against the clinical pathogens 

was performed, and it was observed that NP inhibition is highly dependent on their size and surface. Cytotoxic studies were car-

ried out with these synthesized silver nanoparticles using MTT assay on MCF-7 cells. 

 

Keywords: Abutilon indicum, root extract, nanosilver, pH, bactericidal activity, MCF-7 cells. 

 

 

1. Introduction 

Nanoparticles (NPs) have attracted significant 

global interest for their potential application in vari-

ous fields, including drug delivery, diagnostics, tis-

sue engineering, parasitological usages, and also in 

many clinical and environmental applications, due to 

their unique physical and chemical properties [1, 2]. 

Bio/green synthesis of nanoparticles has received 

considerable attention, as they are non-toxic and 

more advantageous as compared to physical and 

chemical synthesis. At present, diverse types of met-

al nanoparticles are being formed, including copper, 

zinc, titanium, magnesium, gold, and silver, by di-

verse techniques including sono-chemical, spray  

pyrolysis, and hydrothermal. However, recently, bi-

osynthesis of nanoparticles via bacteria, fungi, and 

plants has emerged as an easy and viable alternative 

to the complex physical and chemical synthetic 

methods for obtaining target nanoparticles [3]. Re-

search in nanotechnology, especially for green 

chemistry pathways to fabricate technologically im-

portant nanomaterials, is an immense area of interest 

[4]. 

In recent decades, new methods, based on appli-

cations of photodegradation, appeared promising [5]. 

Plants, bacteria, fungi, and algae have all been used 

for the green synthesis of metal nanoparticles in 

aqueous media [6]. Synthesizing nanoparticles via 

biological entities acting as biological factories of-

fers a clean, non-toxic, eco-friendly method of syn-

thesizing nanoparticles that offer a wide range of 

sizes, shapes, compositions, and physicochemical 

properties [7]. In comparison with microorganisms, 
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plant-mediated biological methods have attracted 

much attention due to the necessity of developing 

new, clean, cost-effective, and efficient synthetic 

techniques. Recently, many biological systems, such 

as bacteria, yeast, fungus, and several plant extracts, 

have been used as reducing agents in the reduction 

of metal ions to form nanoparticles. Synthesis of na-

noparticles employing plants can likely render more 

biocompatibility to the nanoparticles. Furthermore, 

synthesis using plants tends to be faster than using 

microorganisms, and is comparatively easy to scale 

up for the production of enormous quantities of na-

noparticles [8, 9]. Synthesis of NPs by plant extracts 

prevents the use of capping agents to yield size- and 

shape-dependent products. The precise mechanism 

for shape-control of silver and gold nanoparticles by 

biological means is not clear; The option of achiev-

ing NPs of different shapes by using different plant 

parts appears to be a better alternative. A number of 

approaches are accessible for the synthesis of silver 

nanoparticles, For example, reduction in solutions, 

thermal decay of silver compounds, radiation-

assisted, electrochemical, sono-chemical, micro-

wave-assisted processes, and phyto-assisted routes. 

These approaches have numerous benefits over 

chemical, physical, and microbial synthesis, as there 

is no need for the detailed process of culturing the 

cell or for toxic chemicals [10, 11]. 

Plants provide natural capping agents; additional-

ly, the use of plant extracts also reduces the price of 

microorganisms, isolation, and culture media, en-

hancing the “reasonable cost” possibility over nano-

particles synthesized by microorganisms. Some re-

ports established that the antibacterial activities of 

AgNPs are dependent on the size and shape of the 

nanoparticles. The antibacterial activity increases 

with a decreasing size of Ag NPs. Aggregation of 

nanoparticles causes less effect in the antibacterial 

activity of Ag NPs. The rate of reduction of metal 

ions using plants has been found to be much faster 

as compared to microorganisms, and constant for-

mation of metal nanoparticles has been reported. 

The shape and size of the nanoparticles synthesized 

using plants can be controlled and modulated by  

altering the pH [12, 13]. 

It is well known that Ag ions and Ag-based com-

pounds are very noxious to microbes and cell lines, 

showing strong biocidal and cytotoxic effects. Here-

in, we have explored the toxicity studies of synthe-

sized silver nanoparticles using A. indicum root ex-

tract at different pH conditions. 

 

2. Materials and Methods 

2.1. Materials  

Silver nitrate (AgNO3, 99.9 %), potassium bromide 

(KBr), sodium hydroxide (NaOH) were purchased 

from Merck Limited. Nutrient Agar, Nutrient Broth, 

Agar Agar, Muller-Hinton Agar (MHA) were obtained 

from Himedia Laboratories. DMEM (Dulbecco’s 

Modified Eagle’s Medium), Fetal Bovine Serum 

(FBS), and antibiotic solution were from Gibco (USA), 

DMSO (Dimethyl sulfoxide) and MTT (3-4,5 dime-

thylthiazol-2yl-2,5-diphenyl tetrazoliumbromide) 

(5 mg/ml) were from Sigma, (USA), 1X PBS was 

from Himedia, (India). 96 well tissue culture plate and 

wash beaker were from Tarson (India). The plant, Abu-

tilon indicum belonged to Malvaceae family and the 

common name is Thutti. Fresh roots of Abutilon indi-

cum were collected in Manonmaniam Sundaranar 

University Campus, Tirunelveli, Tamil Nadu. 

 
2.2. Preparation of Root Extract 

Freshly collected roots (Figure 1) were thorough-

ly washed under running tap water in order to re-

move the dust and other particles adhering to the 

surface, and then rinsed well with distilled water. 

The surface-cleaned roots were chopped into small 

pieces and mixed with 100 ml of sterile distilled wa-

ter, then boiled at 80 C for 15 minutes. The combi-

nation was chilled to room temperature and filtered 

through Whatman No. 1 filter paper. The obtained 

root extract (yellow color) was stored at 4 C and 

used for the synthesis of silver nanoparticles.  

 

 
Fig. 1. Abutilon indicum (a) plant and (b) fresh roots. 

2.3. Synthesis of Silver Nanoparticles 

12 ml of the root extract was mixed with 88 ml of 

1 mM silver nitrate solution and stirred for 

15 minutes at room temperature. A color change 

from straw yellow to brown was observed, indicat-

ing the formation of silver nanoparticles. In order to 

study the surface structure and reactivity of the sil-

ver nanoparticles synthesized from root extract, the 
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experiments were repeated with different concentra-

tions of silver nitrate solution (1, 2, 3, 4 & 5 mM) 

and at different pH levels (4.5, 6.5, 8.5 & 10.5).  

 
2.4. Instrumentation 

The crystalline character of the synthesized silver 

nanoparticles was examined with the help of pow-

dered XRD, using Panalytical X’pert Powder 

X’Celerator diffractometer. The X-ray patterns were 

obtained in two theta configurations, in the range of 

20°–80°. After drying off the purified silver nano-

particles, the elemental composition of the sample 

was analyzed with energy dispersive analysis of 

X-ray spectroscopy (EDS, Sigma). The surface and 

size were analyzed using a Scanning Electron Mi-

croscope (SEM, Hitachi S-2500C) and Transmission 

Electron Microscope (TEM, Jeol /JEM 2100). Ab-

sorption spectra were recorded on a Perkin Elmer 

Lambda 25 double beam spectrophotometer in the 

wavelength range of 200 nm to 800 nm, with a 1 cm 

path length quartz cuvette. In cytotoxic activity, the 

quantity of formazan product, was measured at 

570 nm using a micro plate reader (Thermo Fisher 

Scientific, USA) 

 
2.5. Bactericidal Activity 

The synthesized AgNPs were tested for antimi-

crobial activity by the agar well-diffusion method 

[14] against different varieties of pathogenic bacteria 

isolated from clinical samples: Bacillus subtilis, 

Staphylococcus aureus (Gram-positive bacteria) 

Escherichia coli, Klebsiella pneumonia (Gram-

negative bacteria). A fresh overnight culture of each 

strain was swabbed uniformly onto the individual 

plates containing sterile MHA with a sterile cotton 

swab; wells of 6 mm diameter were bored into the 

agar medium using gel puncture. Using a micropi-

pette, 100 ▫l of the Ag NPs and root extracts were 

added into each well. Inoculated Petri dishes were 

incubated for 24 hours at 37°C. Following incuba-

tion, different levels of the zone of inhibition which 

formed around the well were measured. Filtrate 

(plant extract) was used as the negative control. The 

experiments were performed in triplicate. 

 
2.6. Cell Culture 

The MCF-7 cell line was cultured in liquid medium 

(DMEM), supplemented with 10 % FBS, 100 u/ml 

penicillin and 100 µg/ml streptomycin, and maintained 

under an atmosphere of 5 % CO2 at 37 °C. 

 
2.7. MTT Assay 

The sample was tested for in vitro cytotoxicity, 

using MCF-7 cells by 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay [15]. 

Briefly, the cultured MCF-7 cells were harvested by 

trypsinization, and pooled in a 15 ml tube. Then, the 

cells were plated at a density of 1 × 105 cells/ml 

cells/well (200 µL) into a 96-well tissue culture plate 

in DMEM medium containing 10 % FBS and 1 % 

antibiotic solution for 24–48 hour at 37 °C. The 

wells were washed with sterile PBS and treated with 

various concentrations of the sample in a serum-free 

DMEM medium. Each sample was replicated three 

times, and the cells were incubated at 37 °C in a 

humidified 5 % CO2 incubator for 24 hours. After 

the incubation period, MTT (20 µL of 5 mg/ml) was 

added into each well and the cells incubated for an-

other 2–4 hours, until purple precipitates were clear-

ly visible under an inverted microscope. Finally, the 

medium, together with MTT (220 µL), was aspirated 

off the wells and washed with 1X PBS (200 µl). Fur-

thermore, in order to dissolve formazan crystals, 

DMSO (100 µL) was added and the plate was shak-

en for 5 minutes. The absorbance for each well was 

measured at 570 nm using a micro plate reader 

(Thermo Fisher Scientific, USA) and the percentage 

cell viability and IC50 value were calculated using 

GraphPad Prism 6.0 software (USA).The relative 

cell viability (%) related to control wells containing 

cell culture medium without nanoparticles as a vehi-

cle was calculated according to the formula, 

Cell viability (%) = Mean OD/control OD × 100  (1) 

Cytotoxicity (%) = 100–cell viability %  (2) 

 

3. Results and Discussion 

3.1. Visual Examination and Spectral Features 

Initially, the reaction mixture exhibited no color 

change, turning brown after 10 minutes of incuba-

tion. The structural variation of the particles was ex-

amined by the UV-Visible absorption spectrum, 

which assists in evaluating the complex formation. 

It is the primary method for indicating the bio-

reduction of silver from aqueous silver nitrate solu-

tion to silver nanoparticles. The brown color indicat-

ed that the process of silver nanoparticles production 

had begun; the intensity of the brown color in-

creased after 24 hours. After 24 hours, the settling of 
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synthesized silver nanoparticles at the bottom of the 

vessel revealed that the reduction of silver metal into 

silver nanoparticles was complete (Figure 2). The 

schematic route for phyto-synthesis is provided in 

Figure 3. Similar color observations were noted in 

the plant extracts of Acalpha indica and Calliandra 

haematocephala [16, 17].  

 

 
Fig. 2. Visual identification of silver nanoparticles (a)  

AgNO3 solution, (b) root extract and (c) Ag NPs 

 
Fig. 3. Schematic representation of phytomediated  

synthesis of Ag NPs 

3.2. Effect of AgNO3 Concentration 

To study the optimal parameters for silver nano-

particles synthesis, the experiments were carried out 

at different concentrations of silver ions (1, 2, 3, 4, 

and 5 mM), presented in Figure 4. The optical absorp-

tion spectra of metal nanoparticles were dominated by 

the surface plasmon resonance (SPR), which dis-

played a shift toward the red end or blue end, depend-

ing upon the particle size, shape, state of aggregation, 

and the surrounding dielectric medium [18]. After 

24 hours, the settling of silver nanoparticles to the 

bottom of the Erlenmeyer flask revealed that the re-

duction of silver metal into silver nanoparticles was 

complete. Different concentrations of silver nitrate 

were carried out to synthesize silver nanoparticles in 

order to find the optimum concentration. Among 

these, 1 mM showed the band at 440 nm, which may 

be due to the various fatty acids present in the root 

extract. The secondary metabolites and other antioxi-

dants present in the root extract served both as reduc-

ing and capping agents to form the nanoparticles. The 

decrease of silver ions and the growth of nanoparti-

cles occurred in 30 minutes, due to excitation of sur-

face plasmon vibrations in the nanoparticles. On in-

creasing the concentration from 2 to 5 mM, the parti-

cles became highly aggregated with one another.  

 

 
Fig. 4. Absorption spectra of silver nanoparticles from  
different metal ion concentration (1, 2, 3, 4 and 5 mM) 

3.3. Effect of pH 

Studies have demonstrated that varying the pH of 

the reaction medium tends to cause variability in the 

shape and size of the synthesized nanoparticles. Dur-

ing the phyto-mediated synthesis of silver nanoparti-

cles using root extracts, a mixture of constituents 

may contribute to the reduction process of silver 

ions. Therefore, altering the chemical state (e.g., ion-

ization) of these constituents can affect the perfor-

mance and rate of the reduction process. For this 

reason, the effect of pH (4.5, 6.5, 8.5, and 10.05) on 

the synthesis of Ag NPs was investigated by using a 

UV-Vis spectrophotometer. The results, shown in 

Figure 5, suggested that the rate of silver nanoparti-

cle synthesis increased with an increasing pH (up to 

pH = 10.05 marked as S1, S2, S3, and S4). The rea-

son for this behavior may be due to the ionization of 

phenolic compounds and tannins in the extract of 

Abutilon indicum [19, 20, 21, 22]. This study sug-

gested that more available functional groups are con-

tained in the extract when the pH is between 8.5 and 

10.5; these are responsible for particle nucleation. 

On the other hand, at a pH less than 4.5, fewer func-

tional groups were available and resulted in particle 

aggregation, forming larger silver nanoparticles. 
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Fig. 5. Absorption spectra of silver nanoparticles  

synthesized from different pH = 4.5, 6.5, 8.5 10.5 marked as  
(S1, S2, S3 and S4) 

 
Fig. 6. X-ray diffraction patterns of the prepared silver  

nanoparticles. Labeled peaks correspond  
to the characteristic diffraction peaks of elemental Ag (0)  

(pH = 4.5, 6.5, 8.5 10.5) 

3.4. X-ray Diffraction  

The crystalline nature of silver nanoparticles was 

confirmed from XRD analysis. Figure 6 shows the 

XRD pattern of Ag NPs obtained using the root ex-

tract of A. Indicum. The diffraction peaks appeared 

at 38.3°, 44.6°, 64.8°, and 77.9, and correspond to 

the (111), (200), (220), and (311) facets of the face-

centered cubic crystal structure, respectively. The 

average crystallite size according to Scherrer’s equa-

tion, calculated using the width of the (111) peak, is 

found to be 15–17 nm nearly in agreement with the 

particle size obtained from TEM image of S3. The 

obtained XRD patterns were compared and coordi-

nated with the joint committee powder diffraction 

standards JCPDS file No. 04–0783. It should be 

mentioned that the unassigned peaks are owing to 

the crystallization of bioorganic phases that happen 

on the outside of the silver nanoparticles.  

 
3.5. SEM–EDX 

The results of SEM analysis demonstrated that 

the average sizes of nanoparticles were 40 nm and 

17 nm. The UV-Vis spectra of the silver nanoparti-

cles were maintained at different pH levels as S1, 

S2, S3, and S4. The surface plasmon resonance 

(SPR) band indicates monodispersed nanoparticles. 

As the pH was increased, the SPR band sharpened in 

basic conditions at a pH of 10.05, which was clearly 

confirmed in absorption spectra of pH. The spectra 

showed a smooth and narrow band at 440 nm, indi-

cating the monodispersed nanoparticles. The broad 

SPR band observed at lower pH values were due to 

the large anisotropic particles. The SEM image ob-

tained for S1 and S3 are shown in Figures 7 and 8. 

It was clear from the SEM images that the particle 

size decreases as the pH is increased, and at last, in 

S3, the average size of the particle was 17 nm. The 

results of EDX analysis is predicted in Figure 9. The 

EDX profile showed a strong silver signal at 3 KeV, 

which predicted the binding energy of AgL. This 

proved the confirmation of pure silver due to the sur-

face plasmon resonance. Presence of weak oxygen 

and carbon peaks in the EDX graph are originated 

from the bio-molecules that were bound to the sur-

face of the AgNPs.  

 
3.6. Transmission Electron Microscope 

The TEM image of silver nanoparticles, shown in 

Figure 10, signifies that the synthesized silver nano-

particles are monodispersed. The image with clear 

lattice fringes reveals that the growth of silver nano-

particles occurred preferentially on the (111) plane. 

In lower pH, the growth was favored due to the ab-

sence of fatty acids. The broadening of the SPR 

band indicated the larger size nanoparticles, as evi-

denced in UV-Vis spectra. In a higher pH environ-

ment, due to the addition of sodium hydroxide, vari-

ous fatty acids viz. linoleic, oleic, stearic, palmitic, 

lauric, myristic, caprylic, capric, and unusual fatty 

acid having C17 carbon skeleton and amyrin from 

unsaponifiable matter, were yielded [17], which in 

turn resulted in the reduction of silver ions and 

formed a large number of very small nanoparticles, 



Karthiga P., Shankar T., Karthick K., Swarnalatha K. / Resource-Efficient technologies 2 (2020) 16–24 
 
 

21 

at 12 nm in size. This gave rise to a sharp and in-

tense SPR band. The synthesized silver nanoparti-

cles were spherical in shape. Some undefined shapes 

were also observed due to slight nucleation. 

 

 
Fig. 7. SEM micrograph of silver nanoparticles (S1) at pH=4.5 

 
Fig. 8. SEM images of silver nanoparticles (S3) at pH= 8.5 

 
Fig. 9. EDX profile of the synthesized silver nanoparticles 
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Fig. 10. TEM and SAED micrograph of silver nanoparticles (S3) at pH= 8.5. 

3.7. Bactericidal Activity 

It has been known, over the last few decades, that 

chemical groups are present in essential oils, which 

are capable of much antibacterial activity; this is 

both a safe and effective therapy against various an-

timicrobial agents [23]. The synthesized nanoparti-

cles inhibit bacterial growth against mainly gram-

negative strains, and to a lesser extent in gram-

positive microbes. Both gram-positive bacteria 

(B. Subtilis, S. Aureus) and gram-negative bacteria 

(E. Coli, K. Pneumonia, and P. aurogenosa) demon-

strated zones of growth inhibition, clearly depicted 

in Figure 11. 

 

 
Fig. 11. Microbial activity of silver nanoparticles (100 µl) 

against test organisms 

Compared to gram-positive organisms, gram-

negative bacteria displayed a maximum zone of in-

hibition (Figure 12), and the possible mode of action 

is shown in Figure 13. There were diverse possibili-

ties for silver NPs to disturb the biological system. 

Silver nanoparticles and soluble silver salts released 

the silver ions when they came in contact with wa-

ter. These ions were biochemically active agents 

[24, 25], and will react with sparingly soluble salts, 

which remain in colloidal dispersion, also undergo-

ing complexation with other bio-molecules. 

 

 
Fig. 12. Antibacterial assay of A. indicum root extract and 
silver nanoparticles against gram-positive and negative 

microbes 

 
Fig. 13. Possible mechanism of the formation of zone of 

inhibition 

Smaller AgNPs possess a higher toxicity than 

larger silver nanoparticles. With smaller-sized parti-

cles, as with a higher pH (basic), the zone of inhibi-

tion enlarges. In the case of a lower pH (acidic), a 

larger particle size was produced due to the agglom-

eration. In lower pH, hydrochloric acid also plays a 
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vital role, as this acid may cause chemical alterations 

in the extract. As reported earlier, secondary me-

tabolites reacted with the acid and produced the ag-

glomeration in the particles. This leads to the varia-

tions in the zone of inhibition [26, 27].  

This can partially be explained by the facilitated 

invasion of smaller-sized nanoparticles into the cell 

wall of gram-negative bacteria, which consists of a 

distinct outer membrane layer and a single pepti-

doglycan. However, in gram-positive bacteria, the 

cell wall consists of numerous peptidoglycan layers; 

therefore its cell wall is more exposed to nanoparti-

cles through the surface bacterial membrane. The 

larger surface area of chitosan-copper nanoparticles 

enables them to interact with the bacterial cell mem-

brane through its surface, leading to bacterial death 

[28]. The above-mentioned possible mechanism is 

also fitting for silver nanoparticles, which lead to the 

death of microbial pathogens. Thus, the size of the 

nanoparticles is important for bactericidal activity. 

 

 
Fig. 14. Percentage of Cell viability against silver  

nanoparticles (S3)  

3.8. Cytotoxic Assay 

AgNPs synthesized using plant extract was tested 

for its cytotoxic effect using MTT on an MCF-7 cell 

line. Biosynthesized AgNPs, of varying concentra-

tions in cell lines, were tested following 24 hours of 

incubation at 37 °C in 5 % CO2. The present study 

examined the effect of root extracts of A. indicum on 

MCF-7 cells survival using the MTT test.  

Twenty-four hours after seeding the cells into 96 

well microliter plates, the effect of 10, 30, 50 and 

100 µg/ml of A. indicum extract mediated Ag NPs 

on cell growth was analyzed [29–31]. When com-

pared to the other concentrations, the Ag NPs at a 

concentration of 100 µg/mL exhibited a significant 

toxic effect. Figure 14 shows the cell viability for 

the control and the sample at 570 nm. Ag NPs pro-

duce a significant cytotoxic effect at concentrations 

of 100 μg/ml.  

 

 4. Conclusion 

We have successfully synthesized silver nanopar-

ticles via a pH-induced phytomediated pathway. The 

effect of silver ion concentration, pH, and root ex-

tract concentration on the size of the silver nanopar-

ticles were investigated. Phytomediated synthesis of 

AgNPs in varying pH media demonstrated a strong 

inhibition against gram-positive and gram-negative 

microbes. The cytotoxic activity of cells (MCF-7) is 

triggered by AgNPs, depending on the concentra-

tion. Current work reported that the A. indicum 

plant-based spherical shaped nanoparticles, with a 

size of 17 nm, were produced in a basic pH condi-

tion, with remarkable antibacterial and cytotoxic ac-

tivities. The results present important features of 

AgNPs, with significant antibacterial and cytotoxic 

activity, in order to attain selected goals in the thera-

peutic applications.  
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