ОСОБЕННОСТИ АРГИЛЛИТИЗИРОВАННЫХ БИТУМИНОЗНЫХ СВИТ Дабу Натан

Научный руководитель доцент Т.Г. Тен

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Во всем мире традиционные углеводородные ресурсы, которые составляют основу энергетической промышленности, находятся в постоянном сокращении. И, чтобы исправить это, необходима компенсация сокращения таких ресурсов за счет эксплуатации нетрадиционных углеводородных ресурсов.

Свита — это геологический термин, который обозначает набор залегающих пластов горных пород, объединенных любым атрибутом. В России в Западной Сибири находятся огромные залежи нетрадиционных углеводородов в баженовской свите. Углеводороды баженовской свиты обнаружены в аргиллитах нефтематеринских пород. Особенности нетрадиционных коллекторов в том, что извлечение из них углеводородов очень трудно из-за низкой пористости вмещающих пород. Трудность извлечения углеводородов баженовской свиты заключается в несовершенстве существующих технологий. Аналогом баженовской свиты в пределах США и Канады являются сланцевые и песчаные нефтематеринские битуминозные породы под названием баккен формация. В настоящей работе изложена история освоения, особенности стратиграфии и сравнительный анализ нефтегазоносности этих свит.

Баженовская свита расположена в Западной Сибири и занимает площадь более 1 млн км². Пласты находятся на глубинах от 2500 до 3000 м. Мощность свиты варьируется от 10 м в краевых частях до 60 м в центре отложения бассейна (рис. 1).

Баженовская свита была открыта Ф.Г.Гурари в 1959 году как подсвита марьяновской свиты, он также первым указал на ее нефтяной потенциал и предложил метод ее эксплуатации (Ф.Г. Гурари, 1961-1986) [3]. В самом начале исследовани предполагали, что баженовская свита однородна по своему литологическому составу и структуре разреза, но после накопления информации установлено, что это не совсем так. В настоящее время различают три свиты: баженоваскую, тутлеймскую и мулиминскую, которые отличаются друг от друга по своим литологическим характеристикам и стратиграфическому объему. В зависимости от района распространения каждая из них подразделяется на несколько типов (Ю.В. Брадучан, Ф.Г. Гурари и др., 1986) [2].

Рис. 1. Распространение баженовской свиты

Разработка баженовской свиты ведется на Салымском месторождении с 1967 г. в скв. 15-р (А.Я. Хавкин, 1992). Формирование отложений баженовской свиты приурочено к волжскому ярусу — нижней части берриаса. Представлены отложения в основном глинисто-кремнистыми, кремнисто-известковистыми и известково-глинистыми отложениями тонкослоистыми, содержащими углеводороды (битумного ряда) со стабильными характеристиками состава [2, 3, 6]. По разным оценкам содержащиеся в баженовской свите ресурсы нефти могут достигать от 100 до 170 млрд. тонн.

Для пород баженовской свиты характерна низкая плотность (2,23-2,4 $\rm r/cm^3$), пористость пород свиты изменяется от 5,8-10% и температура от 80 $^{\circ}$ С до

134°C. В зависимости от глубины пластовое давление меняется от гидростатического до аномально высокого – до 1,3-1,6 (И.И. Нестеров и др., 1985). В баженовской свите зафиксированы необычайно высокие пластовые давления: они часто превышают гидростатическое на 150-200 атмосфер. Причем после отбора первых 20-30 тысяч кубометров нефти давление падает на 70-80 атмосфер, а далее уменьшается очень медленно.

Баженовские отложения отдают 90 процентов нефти. Можно предположить, что это происходит благодаря сжимаемости пласта. Этот коллектор подобен губке, из которой отжимают жидкость. В практике мировой нефтедобычи подобное встречается впервые.

Формация баккен. Свита баккен является одной из крупнейших смежных формаций нефти и природного газа в США. Распространена в пределах больших областей северо-западной Северной Дакоты, северо-восточной Монтаны (США), южного Саскачевана и юго-западной Манитобы (Канада), занимает площадь 520 000 км² (рис. 2). Залегает на глубинах 2,5-3,5 км, толщина до 40 метров. Это промежуточное чередование черного сланца, алевролита и песчаника [6].

Открыта формация баккен в 1953 году геологом J.W. Nordquist, попытки разработки начались в 1970-2000 годах с использованием традиционных методов нефтедобычи. Названа свита в честь Генри Баккена, фермера из Тиоги, штат Северная Дакота, который владел землей, где впервые в 1951 году и была обнаружена нефть [1].

Добыча ресурсов из баккен формации началась в 1953 году компанией Stanolind Oil and Gas. С развитием эксплуатационных способов и появлением горизонтально-наклонных методов бурения и гидроразрыва пласта с 2000-х годов начали разрабатывать несколько уровней формации [5].

Открытие в 2000 году нефтяного месторождения Elm Coulee в Ричланде, штат Монтана, где добыча, как ожидается, достигнет 270 млн. баррелей, привлекло большое внимание к вопросу происхождения углеводородов в пластах Баккен формации.

Свита баккен приурочена к бассейну реки Уиллистон; возраст образований установлен от позднего девона до раннего карбона.

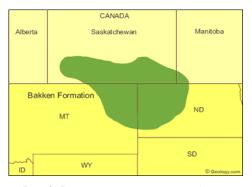


Рис. 2. Распространение свиты баккен

В стратиграфическом составе формации выделяют 3 части:

- нижняя сланцевая часть (Lower shale member) обогащена органическим веществом и имеет с мощность до 15 м;
- средняя песчаная часть (Middle sandstone member) толщиной до 40 м содержит до 7 % OB. Именно из неё получают углеводороды; верхняя сланцевая часть (Upper shale member) имеет толщину до $25 \,\mathrm{m}$ [7].

Верхняя и нижняя части формации иногда упоминаются в литературе под общим названием Bakken shale formation (сланцевая формация Баккен). Среднее содержание ОВ в свите изменятся от 11 % до 35 %, исходным материалом служит планктон. Органическое вещество относится к сапропелевому типу

По оценкам USGS, сделанным в апреле 2013 года, из пластов Баккен и Три Форкс может быть извлечено $1,036\cdot 10^7$ млрд. тонн нефти, а с использованием современных технологий – дополнительно 6,7 триллиона кубических футов природного газа и 530 млн. баррелей нефти.

Таблица

Сравнительная характеристика баженовской свиты и формации баккен

Показатели сравнения	Свиты	
	Баженовская	Баккен
Год открытия	1959	1953
Площадь	1000000 км ²	520 000 км ²
Литологический состав	Глинисто-кремнистые, кремнисто- известковистые и известково- глинистые породы	Доломиты, сланцы, песчаники
Возраст нефтегазоносных комплексов	Волжский ярус	Поздний девон - ранний карбон
Мощность нефтегазоносных комплексов	10-60 м	40 м
Нефтегазоносность	100-170 млрд тонн нефти	1,036·10 ⁷ млрд тонн нефти
Глубина залегания	2,5 – 3 км	2,5 – 3,5 км
Содержание ОВ	18-50%	11-35%
Условия формирования	Глубоководные морские фации	Глубоководные морские фации

Литература

- Hobart M. King. Bakken Formation: News, Maps, Videos and Information Sources. Интернет-ресурсы, дата обращения 02/02/2020, https://geology.com/articles/bakken-formation.shtml.
- 2. Алексеев А. Д. Природные резервуары нефти в отложениях баженовской свиты на западе Широтного Приобья. Автореферат диссертации на соискание степени канд. геол.- минер. наук. – М., 2009. – 26 с.
- 3. Брадучан Ю.В., Булынникова С.П., Вячкилева Н.П., Гольберт А.В., Гурари Ф.Г. и др. Баженовский горизонт Западной Сибири. Стратиграфия, палеогеография, экосистема, нефтеносность // Труды института геологии и геофизики. Новосибирск, 1986. Вып. 649. 215 с.
- 4. Недоливко Н.М., Перевертайло Т.Г. Литолого-петрографические особенности коллекторов баженовской свиты на юго-востоке Западно-Сибирской провинции (Томская область) // Известия Томского политехнического университета. Инжиниринг георесурсов. Томск: Изд-во ТПУ, 2019. Т. 330. № 1. С. 77 87.
- Прищепа О.М., Аверьянова О.Ю., Высоцкий В.И., Морариу Д. Формация Баккен: геология, нефтегазоносность и история разработки. – М.: Нефтегазовая геология. Теория и практика, 2013. – Т.8. – №2. [Электронный ресурс]. UPL: http://www.ngtp.ru/rub/9/19 2013.pdf
- 6. Славкин В.С., Алексеев А.Д., Колосков В.Н. Некоторые аспекты геологического строения и перспектив нефтеносности баженовской свиты на западе Широтного Приобья // Нефтяное хозяйство, 2007. №8. С. 100 –105.
- 7. Чиков Б.М., Гайдебурова Е. А., Зиновьев С.В. Баженовский горизонт в структуре мезозойского комплекса // Геология нефти и газа. –1997. №10. С. 4 10.