На правах рукописи

БАЙСОВА БИБИГУЛЬ ТУЛЕГЕНОВНА

ИССЛЕДОВАНИЕ КИНЕТИКИ ПРОЦЕССОВ ЗАСЕЛЕНИЯ МЕТАСТАБИЛЬНЫХ СОСТОЯНИЙ АТОМОВ И МОЛЕКУЛ В ПЛАЗМЕ ГАЗОВЫХ РАЗРЯДОВ

Специальность 01.04.08- физика плазмы

ΑΒΤΟΡΕΦΕΡΑΤ

на соискание ученой степени

кандидата физико-математических наук

ТОМСК-2006

Работа выполнена в Омском Государственном

университете им. Ф.М. Достоевского

Научный руководитель:	кандидат физико-математических наук
	доцент Струнин Владимир Иванович
Официальные оппоненты:	доктор физико-математических наук
	профессор Бутов Владимир Григорьевич
	доцент кафедры технической физики,
	кандидат физико-математических наук
	Луценко Юрий Юрьевич
Ведущая организация:	НИИ Прикладной математики и
	механики, г. Томск

Защита состоится «23» мая 2006 года в 14.30 часов в ауд.228 10-го учебного корпуса на заседании диссертационного совета ДС 212.025.01 при Томском политехническом университете (634050, г. Томск, пр. Ленина,30)

С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета.

Автореферат разослан «18 » апреля 2006 года

Ученый секретарь диссертационного совета Шил Орлов А.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

3

<u>Актуальность темы.</u> В последние годы широкое развитие получили исследования электрических разрядов в разреженной атмосфере химически активных газов. Повышение интереса к этой проблеме определяется тем, что в плазме газовых разрядов в атмосфере реакционного газа, интенсивно протекают реакции плазмохимического синтеза различных материалов, широко применяющихся в современной технике. Определяющую роль в этих процессах играют метастабильные состояния атомов и молекул. Связано это, прежде всего с тем, что энергия данных состояний достаточна, для того чтобы снизить энергетический порог реакции и повысить эффективность протекания плазмохимических процессов.

Непосредственное измерение концентраций метастабильных частиц сопряжено со значительными трудностями, вследствие малости вероятностей радиационных переходов с них. Для их регистрации используются спектральные методы поглощения излучения, а также косвенные методы – передача возбуждения на излучающие состояния малой примеси, например ртути, использование которых в разрядах затруднительно, поскольку возможно влияние на сигнал других возбужденных частиц, ионов и электронов.

При моделировании плазмохимических процессов с целью оптимизации технологических режимов и получения материалов с заданными свойствами становится актуальной разработка методик оценки заселенности метастабильных состояний.

Данная работа проводилась в Омском государственном университете им. Ф.М. Достоевского с 1998 года в рамках ФЦП «Интеграция академической науки и высшей школы» по направлению 2.1

«Развитие и поддержка системы совместных учебно-научных центров филиалов и кафедр университетов», а также в рамках НТП Миннауки «Научные основы конструирования новых материалов и создание новых технологий».

<u>Цель работы:</u> Исследование влияния заселенности метастабильных состояний атомов аргона и молекул азота на кинетику роста пленок нитрида алюминия и аморфного кремния для оптимизации режимов осаждения.

Задачи исследований:

1. Разработка математической модели процессов возбуждения и девозбуждения метастабильных состояний атомов аргона и молекул азота в газоразрядной плазме.

 Расчет и экспериментальные исследования заселенностей метастабильных состояний атомов аргона и молекул азота в плазме тлеющего и высокочастотного разрядов. Определение механизмов возбуждения и девозбуждения метастабильных состояний.

3. Исследование зависимости заселенности метастабильных состояний атомов аргона в плазме высокочастотного разряда в зависимости от давления ($P = 0.02 \div 0.1$ Top) в атмосфере чистого аргона и в смеси аргонсилан (95% Ar - 5%SiH₄).

4. Исследование зависимости заселенности метастабильного состояния молекул азота в плазме тлеющего разряда в зависимости от давления (*P*=0,002 ÷ 5Top) и тока разряда (*I*=100 ÷ 400 мА).

5. Исследование скорости роста пленок нитрида алюминия в зависимости от тока тлеющего разряда и давления.

Научная новизна работы заключается в следующем:

1. Разработана оригинальная математическая модель процессов

Долганева С.Л., Струнин В.И., Струнина Н.Н., Байсова Б.Т.
 Заселенность электронного состояния A³Σ⁺_u молекул азота в плазме
 тлеющего разряда //В сб. «Микросенсорика ИСМЭ СО РАН (Материалы и элементная база)», Омск, 2000, с. 157-162.

Струнин В.И., Струнина Н.Н., Байсова Б.Т. Плотность метастабильного состояния A³Σ⁺_u молекулярного азота в плазме газового разряда // В сб. «Микросенсорика ИСМЭ СО РАН (Материалы и элементная база)», Омск, 2001, с. 126-129.

8. Струнин В.И., Струнина Н.Н., Б.Т. Байсова Б.Т. Определение заселенности колебательных уровней состояния $B^3 \Pi_g$ молекул азота в плазме тлеющего разряда // Тез. Межрегиональной научно-технической конференции «Многоцелевые гусеничные и колесные машины: разработка, производство, боевая эффективность, наука и образование», Омск, 2002, ч. 2, с.86-87.

9. Струнин В.И., Струнина Н.Н., Байсова Б.Т. Заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекулярного азота в зоне отрицательного свечения тлеющего разряда // Тез. 3-го международного симпозиума по теоретической и прикладной плазмохимии, Плес, 2002, с. 417-419.

10. Струнин В.И., Струнина Н.Н., Байсова Б.Т. Заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекул азота в плазме положительного столба тлеющего разряда // Тез. Ш международного технологического конгресса, Омск, 2005, ч. 1, с. 327-328.

Список цитируемой литературы.

1. Струнин В.И., Пихо О.С., Шевелева Т.В., / Получение и исследование пленок нитрида алюминия, полученных химическим осаждением из паровой фазы в атмосфере реакционного газа с дополнительным возбуждением тлеющего разряда / Научное издание «МИКРОСЕНСОРИКА материалы и элементарная база» 2000 г.

Основные результаты диссертации опубликованы в следующих работах: 1. Тихомиров И.А., Струнин В.И., Струнина Н.Н., Байсова Б.Т. Определение заселенности электронного состояния $A^{3}\Sigma_{u}^{+}$ молекул азота в плазме тлеющего разряда // ЖТФ, 2001, т. 71, № 5, с.25-27.

 Струнин В.И., Струнина Н.Н., Байсова Б.Т. Абсолютные заселенности метастабильных состояний аргона в плазме высокочастотного разряда // ЖТФ, 2003, т. 73, № 8, с.30-33.

Струнин В.И., Струнина Н.Н., Байсова Б.Т. Заселенность метастабильного состояния A³Σ⁺_u молекулярного азота в зоне отрицательного свечения тлеющего разряда // Деп. в ВИНИТИ 26.05.2005, № 752-В2005.

Струнин В.И., Струнина Н.Н., Байсова Б.Т.Абсолютная заселенность метастабильного состояния A³Σ⁺_u молекулы азота в плазме тлеющего разряда //ЖТФ, 2006, т. 76, № 2, с. 21-25.

5. Струнин В.И., Струнина Н.Н., Байсова Б.Т. Плотность метастабильных состояний атомов аргона в ВЧЕ разряде аргон-силановой плазмы //Тез. Всероссийской научной конференции «ФНТП-2004» ISBN 5-8021-0416-3 Петрозаводск, 2004, т. 2, с. 5-8.

возбуждения и девозбуждения метастабильных состояний атомов аргона и молекул азота. В модель включены процессы, протекание которых наиболее вероятно с точки зрения их скорости. Произведен кинетический расчет заселенностей метастабильных состояний атомов аргона и молекул азота в плазме тлеющего и высокочастотного разрядов. Определены процессы, ответственные за возбуждение и девозбуждение метастабильных состояний.

2. Впервые проведены исследования заселенности метастабильных состояний атомов аргона в зависимости от давления ($P = 0.02 \div 0.1$ Top) в атмосфере смеси аргон-силан (95% Ar - 5%SiH₄).

3. Впервые определены заселенности метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекулярного азота в вакуумно-дуговом разряде (ток дугового разряда i = 25 A) при одновременном возбуждении тлеющего разряда.

4. Впервые проведены сравнительные исследования заселенности метастабильного состояния $N_2(A^3\Sigma_u^+)$ в положительном столбе и отрицательном свечении тлеющего разряда.

5. Впервые проведены исследования влияния заселенности метастабильного состояния молекул азота на скорость роста пленок нитрида алюминия в вакуумно – дуговом разряде при одновременном возбуждении тлеющего разряда.

Положения, выносимые на защиту:

1. Математическая модель процессов возбуждения и девозбуждения метастабильных состояний атомов аргона и молекул азота.

2. Результаты моделирования процессов, определяющих заселенность метастабильных состояний атомов аргона и молекул азота, механизмы возбуждения и девозбуждения метастастабильных состояний атомов

аргона и молекул азота в низкотемпературной плазме.

3. Результаты экспериментальных исследований заселенности метастабильных состояний атомов аргона в плазме высокочастотного разряда в атмосфере чистого аргона и в смеси аргон–силан в зависимости от давления ($P = 0.02 \div 0.1$ Top).

4. Результаты экспериментальных исследований по определению заселенностей метастабильного состояния молекулярного азота в зависимости от силы тока тлеющего разряда ($I = 100 \div 400$ мА), давления ($P = 0,002 \div 5$ Top) в плазме тлеющего и комбинированного (вакуумнодуговой +тлеющий) разрядов.

5. Результаты экспериментальных исследований зависимости скорости образования тонких пленок нитрида алюминия от тока тлеющего разряда и давления.

Научная и практическая ценность работы:

Заключается в исследовании влияния заселенности метастабильных состояний атомов аргона и молекул азота на кинетику роста пленок нитрида алюминия и аморфного кремния для оптимизации режимов осаждения.

<u>Достоверность результатов</u> подтверждается использованием при моделировании апробированных классических соотношений неравновесной химической кинетики. Полученные результаты расчетов соответствуют не противоречат теоретическим и экспериментальным данным других авторов.

<u>Личный вклад автора</u> заключается в проведении спектральных измерений по определению абсолютных интенсивностей спектральных линий и молекулярных полос, в проведении расчетов по определению заселенностей метастабильных состояний, а также разработке корреляции между скоростью роста тонких пленок нитрида алюминия и заселенностью метастабильного состояния молекул азота.

Показано, что скорость образования пленок увеличивается с ростом заселенности метастабильного состояния молекул азота. При этом скорость роста пленок в положительном столбе тлеющего разряда выше аналогичной величины в отрицательном свечении.

Установлено, что скорость образования тонких пленок нитрида алюминия, при одновременном возбуждении тлеющего и дугового разрядов, увеличивается в 2-3 раза по сравнению с аналогичной величиной только в дуговом разряде, а разбавление аргона силаном позволяет увеличить скорость образования тонких пленок аморфного кремния на порядок. При этом адгезионная прочность [1], как и заселенность метастабильного состояния молекул азота, увеличивается с ростом тока тлеющего разряда. Следовательно, полученные результаты можно использовать для оптимизации технологического процесса осаждения пленок нитрида алюминия для снижения затрат на их производство для нужд микроэлектроники.

Таким образом, диссертация, в соответствии с поставленной целью, является законченной научно-квалификационной работой, содержащей решение актуальной задачи исследования влияния заселенности метастабильных состояний атомов аргона и молекул азота на кинетику роста пленок нитрида алюминия и аморфного кремния для оптимизации режимов их осаждения.

выше, чем в смеси аргон-силан, что указывает на наличие дополнительного канала девозбуждения метастабильных атомов аргона на молекулах силана.

Сравнение полученных нами результатов расчета с данными экспериментальных исследований и результатами других авторов показало, что они различаются не более чем на 11 %, что указывает на адекватность разработанной модели.

3. Проведены экспериментальные исследования абсолютной заселенности метастабильного состояния молекулярного азота $A^{3}\Sigma_{u}^{+}$ в зависимости от давления (0,002 – 5,000 Тор) и тока тлеющего разряда (100 – 400 мА).

Показано, что заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$ растет с ростом тока тлеющего разряда и уменьшением давления газа. С увеличением тока тлеющего разряда увеличивается концентрация электронов и, как следствие, растет число актов возбуждения молекул азота прямым электронным ударом. С увеличением давления газа заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$ падает из-за дезактивации атомами и молекулами азота. При одновременном возбуждении тлеющего и дугового разрядов заселенность метастабильного состояния в два раза выше аналогичной величины в плазме тлеющего разряда при тех же условиях. Следовательно, в дуговом разряде происходит дополнительное возбуждение молекул.

4. Проведены экспериментальные исследования влияния заселенности метастабильного состояния молекул азота на скорость роста пленок нитрида алюминия в зависимости от давления (0,002 -0,06 Тор) и тока тлеющего разряда (100 – 400 мА). Установлено наличие

математической модели процессов, определяющих заселенности метастабильных состояний и интерпретации полученных результатов.

<u>Апробация работы.</u> Результаты работы докладывались и обсуждались на 3-ем Международном симпозиуме по теоретической и прикладной плазмохимии (г. Плес, 2002), Всероссийской научной конференции «ФНТП-2004» (г. Петрозаводск, 2004), межрегиональной научно-технической конференции БРОНЯ-2002 (г. Омск, 2002), 3-ем международном технологическом конгрессе (г. Омск, 2005), а также на научных семинарах кафедры экспериментальной физики Омского государственного университета.

Публикации. По результатам работы опубликовано 10 печатных работ, в том числе 6 статей и 4 тезиса докладов на конференциях.

Структура диссертации. Диссертация состоит из введения, четырех глав, выводов, заключения и списка литературы. Изложена на 130 страницах и содержит 43 рисунка и 41 таблицу. Список литературы состоит из 96 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы цель и задачи работы, описана научная новизна и практическая значимость работы, приведено ее общее описание.

Первая глава посвящена анализу существующих методов определения заселенностей метастабильных состояний атомов аргона и молекул азота, а также литературных данных по процессам, протекающим в плазме газовых разрядов с участием этих состояний. Кроме того, в главе проведен анализ характеристик тлеющего разряда в приложении к способам и механизмам возбуждения метастабильных состояний атомов и молекул.

Из литературных данных известно, что сведения об элементарных процессах, протекающих в плазме газовых разрядов, с участием метастабильных состояний атомов и молекул и методах оценки заселенности этих состояний носят ограниченный и противоречивый характер. В существующей по данному вопросу литературе информация о значениях заселенности метастабильных состояний и коэффициентах скоростей процессов приводится в очень узком диапазоне параметров плазмы. Поэтому возникает необходимость для оптимизации плазмохимических процессов напыления пленок детально исследовать заселенности метастабильных состояний атомов и молекул. Эти исследования целесообразно осуществить в широком диапазоне изменения параметров плазмы, что может быть достигнуто путем изменения давления газа, тока разряда, состава плазмообразующего газа.

<u>Во второй главе</u> представлена разработанная методика определения заселенности метастабильных состояний атомов аргона, а также результаты экспериментов по определению заселенностей метастабильных состояний атомов аргона в плазме высокочастотного разряда в атмосфере чистого аргона и в смеси аргон-силан.

В основе способов формирования пленок аморфного кремния лежит разложение силана (SiH_4) в электрическом разряде. Разложение силана в плазме ВЧ-разряда происходит по двум наиболее существенным каналам – в результате электронного удара и взаимодействия с метастабильными частицами аргона $Ar(3p_54s^3P_{0,2})$, если используется смесь $Ar + SiH_4$.

С целью определения влияния метастабильных состояний аргона

Выводы. Заключение

1. Разработана оригинальная математическая модель процессов заселения и девозбуждения метастабильных состояний атомов аргона и молекул азота в плазме газовых разрядов, позволяющая проводить расчет заселенностей метастабильных состояний атомов аргона и молекул азота в низкотемпературной плазме. С использованием этой модели были проведены расчеты заселенности метастабильных состояний атомов аргона и молекул азота в зависимости от давления (0,002-5 Top), тока разряда (100-400 мА) и состава плазмообразующего газа (N_2 , Ar, 95% Ar-5% SiH_4).

Установлено, что заселение метастабильных состояний атомов аргона и молекул азота происходит путем возбуждения прямым электронным ударом, а также путем радиационных переходов атомов аргона ($3p_55p \rightarrow 3p_54s$) и молекул азота (переход $B^3\Pi_g \rightarrow A^3\Sigma_u^+$); девозбуждение метастабильных состояний происходит путем дезактивации атомами и молекулами газа, либо частицами примеси, а также путем дезактивации на стенках.

2. Проведены экспериментальные исследования заселенности метастабильных состояний атомов аргона в плазме высокочастотного разряда в зависимости от давления (0,02-0,1Top) в атмосфере чистого аргона и смеси аргона с силаном (95% Ar – 5% SiH₄).

Установлено, что заселенность метастабильных состояний уменьшается с ростом давления газа, что объясняется дезактивацией метастабилей атомами аргона в основном состоянии. Значения заселенности метастабильных состояний в атмосфере чистого аргона

0,001

0,01

P, Top

Рис. 12. Зависимость скорости роста пленок нитрида алюминия и заселенности состояния $A^{3}\Sigma_{u}^{+}$ в положительном столбе тлеющего разряда от давления (I = 100 мA, i = 25 A): 1- v; 2- $\left[N_{2}\left(A^{3}\Sigma_{u}^{+}\right)\right]$.

0,1

0

Рис. 13. Зависимость скорости роста пленок AlN от давления

на процессы разложения молекул силана заселенности метастабильных состояний ${}^{3}P_{0}$ и ${}^{3}P_{2}$ аргона определялись, как в чистом аргоне, так и в смеси аргон-силан.

9

Исследуемый высокочастотный разряд возбуждался между электродами из нержавеющей стали в кварцевой трубке диаметром 25 мм и длиной 70 мм. Возбуждение разряда производилось от ВЧгенератора ЛД1-06, номинальная колебательная мощность которого на частоте 13,56 мГц составляет 500 Вт.

Исследование заселенности проводилось в диапазоне давлений от 0,01 до 0,1 *Top*. Излучение разряда регистрировалось спектрографом ИСП-30 с трехлинзовой системой освещения щели, ширина которой составляла 8 *мкм*.

Время экспозиции разряда выбиралось экспериментально и составило 45 минут. Для выбора времени экспозиции спектр разряда фотографировался при различных значениях времени экспозиции. За оптимальное время экспозиции было принято время, которому соответствовало почернение в спектре разряда, лежащее в области нормальных почернений характеристической кривой фотопластинки.

Для получения абсолютных интенсивностей спектральных линий была проведена калибровка системы по эталонной лампе *Cu-8-200V*.

Фотопластинка расшифровывалась на спектропроекторе СПП-2М и фотометрировалась на микрофотометре $M\Phi$ -4, ширина щели которого составила S = 15 мкм.

При проведении эксперимента в спектре разряда были выявлены 3 линии, соответствующие процессам излучательных переходов $(3p_9 \rightarrow 1s_5, 3p_2 \rightarrow 1s_3, 3p_7 \rightarrow 1s_5)$, при которых происходит заселение метастабильных состояний (табл.1).

Заселенность уровней $3p_9$, $3p_2$ и $3p_7$ конфигурации $3p_55p$ определялась по интенсивности спектральных линий, длины волн которых представлены в табл. 1.

линий атомов аргона.

Таблица 1.

Значения вероятностей переходов и сил осцилляторов для

λ,Å	Переход	$f_{1,2} \cdot 10^3$	g_1	g_2	А ,10 ⁶ сек ⁻¹	<i>Е</i> ₁ , э <i>В</i>	Е ₂ , эВ
4164,18	$3p_9 \rightarrow 1s_5$	0,46	5	3	0,278	11,55	14,52
4181,88	$3p_2 \rightarrow 1s_3$	4,6	3	3	0,587	11,72	14,69
4200,67	$3p_7 \rightarrow 1s_5$	3,8	5	7	1,031	11,55	14,50

Расчет заселенности этих уровней проводился по формуле:

$$N = \frac{4\pi GSE(\lambda, T_{n})\frac{d\lambda}{dx}}{Ah\nu l}\frac{t_{1}}{t_{2}},$$
(1)

где G - увеличение спектрографа; S - ширина щели микрофотометра;

 $\frac{d\lambda}{dx}$ -обратная дисперсия; l- диаметр трубки; t_1 - время, в течение

которого регистрировался спектр лампы; t_2 - время, в течение которого регистрировался спектр разряда.

Вероятность оптического перехода А определялась по формуле:

состояния $A^{3}\Sigma_{u}^{+}$ молекулы азота, так и скорость образования пленок в плазме положительного столба выше, чем в отрицательном свечении.

Полученная информация позволит корректировать соотношение внешних параметров газового разряда таким образом, чтобы оптимизировать процесс осаждения тонких пленок нитрида алюминия (скорость образования) и повысить их качество (адгезионную прочность).

Рис. 11. Зависимость скорости роста пленок нитрида алюминия и заселенности состояния $A^{3}\Sigma_{u}^{+}$ в положительном столбе тлеющего разряда от тока тлеющего разряда (P=0,06 *Top*, i=25 A): 1- $\left[N_{2}\left(A^{3}\Sigma_{u}^{+}\right)\right]$; 2- V.

Рис. 10. Зависимость концентрации электронов от тока тлеющего разряда:

1. P = 0.06 Top, i = 25A; 2... P = 0.06 Top

Наблюдается рост концентрации $A^{3}\Sigma_{u}^{+}$ с уменьшением давления (рис. 8). Уменьшение заселенности этого состояния с ростом давления можно объяснить преимущественно тушением атомами (процесс №13, табл. 4) и молекулами азота (процесс №7, табл. 4).

В четвертой главе исследована зависимость скорости образования и адгезионной прочности (качества) пленок нитрида алюминия от тока тлеющего разряда и давления азота. В результате проведенных исследований установлено, что скорость роста пленок (рис.11, 12) и их адгезионная прочность увеличиваются с ростом тока тлеющего разряда и снижением давления газа. Что указывает на то, что скорость образования пленок нитрида алюминия и их качество повышаются с ростом заселенности метастабильного состояния $A^3 \Sigma_u^+$ молекул азота.

На рис. 13 представлена скорость роста пленок нитрида алюминия от давления при напылении в положительном столбе и отрицательном свечении тлеющего разряда. Как и заселенность метастабильного

$$A = 0,67 \cdot 10^8 \left(g_1 f_{1,2} \right) / \left(g_2 \lambda^2 \right), \ c e \kappa^{-1}$$
⁽²⁾

где g_1 и g_2 - статистические веса соответственно нижнего и верхнего уровней; $f_{1,2}$ - сила осциллятора; λ - длина волны, *мкм*.

Время экспозиции лампы t_1 составило 10 сек.

Спектральная плотность излучения $E(\lambda, T_n)$ определялась по формуле:

$$E(\lambda, T_{n}) = \frac{2\pi c^{2}h}{\lambda^{5}} \frac{1}{\exp\left(\frac{hc}{k\lambda T_{n}}\right)} \mathcal{E}_{\lambda, T} \quad , \qquad (3)$$

где $\mathcal{E}_{\lambda,T}$ - спектральный коэффициент теплового излучения [16]; $T_{,n}$ температура лампы при равенстве мощности излучения разряда и лампы (равенство почернений фотоэмульсии в спектре излучения разряда и лампы).

На рис.1 представлена зависимость уровня $3p_2$ конфигурации $3p_55p$ атома аргона от давления в атмосфере чистого аргона и в смеси аргон-силан.

Рис.1. Зависимость заселенности уровня $3p_2$ конфигурации $3p_55p$ атомов аргона от давления: 1- Ar; 2- $Ar - SiH_4$.

Определение абсолютной заселенности метастабильных состояний $1s_5$ и $1s_3$ аргона в атмосфере чистого аргона проводилось из решения уравнения баланса:

$$k_{1}N_{S}N_{e} - N_{P}N_{e}(k_{2} + k_{3} + k_{4}) - k_{5}N_{P}N_{S} - k_{7}(N_{P})^{2} - D\frac{N_{P}}{\Lambda^{2}} + \sum_{i}A_{i}N_{i} = 0 \qquad , \qquad (4)$$

в атмосфере аргона с силаном:

$$k_{1}N_{S}N_{e} - N_{P}N_{e}(k_{2} + k_{3} + k_{4}) - k_{5}N_{P}N_{S} - k_{7}(N_{P})^{2} - (k_{9} + k_{10})N_{P}N_{SiH_{4}} - D\frac{N_{P}}{\Lambda^{2}} + \sum_{i}A_{i}N_{i} = 0$$
(5)

где N_P - заселенность метастабильного состояния; N_S -концентрация атомов в основном состоянии; N_{SiH_4} - концентрация молекул силана; A_i - вероятность перехода; N_i - концентрация атомов аргона на уровнях

Рис. 9. Заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекулы азота от тока тлеющего разряда: 1. *P*=0,06 *Тор*, *i*=25 *A*; 2. . *P*=0,06 *Тор*.

Основной поток заселения состояния $A^{3}\Sigma_{u}^{+}$ в разряде обусловлен прямым возбуждением молекул электронным ударом (процесс №1, табл. 4) и дезактивацией состояния $B^{3}\Pi_{g}$ в результате радиационных переходов (процесс №2, табл. 4) и тушения молекулами азота (процесс №3, табл. 4). Дезактивация молекул $N_{2}(A^{3}\Sigma_{u}^{+})$ происходит либо на стенке (P < 1*Тор*), либо при соударениях с атомами и молекулами в объеме (P > 1 *Тор*). С увеличением тока разряда заселенность состояния $A^{3}\Sigma_{u}^{+}$ растет, что обусловлено увеличением концентрации электронов N_{e} (рис. 10).

Рис. 7. Заселенность нулевого колебательного уровня метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекулы азота от тока тлеющего разряда:

1. *i* =25 *A*, *P* =0,06 *Top* (пол.ст.); 2. *P* =0,06 *Top*(пол.ст.).

Полная заселенность метастабильного состояния молекулы азота растет с уменьшением давления (рис. 8) и ростом силы тока тлеющего разряда (рис. 9).

Рис. 8. Заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$

молекулы азота от давления:

1. *i* =25 *A*, *I* = 100 *мА* (пол.ст.); 2. *I* = 100 *мА* (пол.ст.);

3. i = 25 A, I = 100 мА (отр.св.); 4. I = 100 мА (отр.св.).

 $3p_55p$, переходящих с излучением на метастабильный уровень; D-коэффициент диффузии; N_e -концентрация электронов; k_1 - k_5, k_7, k_9, k_{10} - коэффициенты скоростей процессов, приведенных в табл.2.

Таблица 2.

Основные процессы заселения и девозбуждения метастабильных уровней атома аргона.

		Коэф-т
		скорости
№	Процесс	процесса
		k_i ,
		см ^{3.} сек ⁻¹
1.	$Ar(3p^{6-1}S_0) + e \to Ar(3p^54s^{-3}P_{0,2}) + e$	3,1.10-11
2.	$Ar(3p^{5}4s^{3}P_{0,2}) + e \rightarrow Ar(3p^{6}S_{0}) + e$	3,5.10-10
3.	$Ar(3p^{5}4s^{3}P_{0,2}) + e \to Ar(3p^{5}5p) + e$	5.10-7
4.	$Ar(3p^{5}4s^{3}P_{0,2}) + e \rightarrow Ar^{+} + 2e$	10 ⁻¹³
5.	$Ar(3p^{5}4s^{3}P_{0,2}) + Ar(3p^{6}S_{0}) \rightarrow 2Ar(3p^{6}S_{0}) + hv$	3.10-15

		Коэф-т скорости
№	Процесс	процесса k_i ,
		см ^{3.} сек ⁻¹
6.	$Ar(3p^{5}4s^{3}P_{0,2}) \xrightarrow{cmenka} Ar(3p^{6}S_{0})$	$\left[360/\left(PR^2\right)\right]$
		$(T_2/300)^{12}$ Cek
		1
7.	$2Ar(3p^{5}4s^{3}P_{0,2}) \rightarrow Ar^{+} + Ar + e$	10-9
8.	$Ar(3p^{5}5p) \rightarrow Ar(3p^{5}4s^{3}P_{0,2}) + hv$	10 ⁶ сек ⁻¹
9.	$Ar(3p^{5}4s^{3}P_{0,2}) + SiH_{4} \rightarrow Ar + SiH_{3} + H$	1,4.10 ⁻¹⁰
10.	$Ar(3p^{5}4s^{3}P_{0,2}) + SiH_{4} \rightarrow Ar + SiH_{2} + 2H$	2,64 10-10

Таблица 2. (продолжение)

В плазме инертных газов возбуждение электронных уровней целиком определяется суммой прямого (процесс №1, табл. 2) и ступенчатого (процесс №3, табл. 2) возбуждений электронным ударом, а дезактивация обусловлена тушением в результате столкновений с невозбужденными атомами (процесс №5, табл. 2). В дезактивации метастабильных уровней существенную роль играют процессы ступенчатого возбуждения (процесс №3, табл. 2) и ионизации атомов электронным ударом (процесс №4, табл. 2) и ионизации атомов электронным ударом (процесс №4, табл. 2) и ассоциативная, и пеннинговская ионизации при столкновении двух метастабильных атомов (процесс №7, табл. 2). Кроме того, заметный вклад в их дезактивацию может давать диффузия и дезактивация на стенках (процесс №6, табл. 2). Заселенность состояния $B^3 \Pi_g$ растет с ростом тока разряда и уменьшением давления азота. Как видно из результатов уровень заселенности колебательных уровней состояния $B^3 \Pi_g$ в тлеющем разряде с одновременным возбуждением дуги в два раза выше, чем в плазме тлеющего разряда.

Заселенность нулевого колебательного уровня состояния $A^{3}\Sigma_{u}^{+}$ в зависимости от условий возбуждения разряда представлена на рис.6 и рис.7.

состояния $A^{3}\Sigma_{u}^{+}$ молекулы азота от давления: 1. i = 25 A, $I = 100 \ \text{мA}$ (пол.ст.); 2. $I = 100 \ \text{мA}$ (пол.ст.);

3. *i* =25 *A*, *I* = 100 *мА* (отр.св.); 4. *I* = 100 *мА* (отр.св.).

Рис.4. Зависимость заселенности третьего колебательного уровня

состояния $B^3 \Pi_g$ молекулы азота от давления: 1. *i* =25 *A*, *I* =100 *мА* (пол.ст.); 2. *I* =100 *мА* (пол.ст.); 3. *i* =25 *A*, *I* =100 *мА* (отр.св.); 4. *I* =100 *мА* (отр.св.).

Рис. 5.Зависимость заселенности третьего колебательного уровня состояния В³ П_g молекулы азота от тока тлеющего разряда:
1. *i* = 25 A, P = 0,06 Top (пол.ст.); 2. P = 0,06 Top (пол.ст.).

Результаты вычислений заселенности метастабильных состояний ${}^{3}P_{0}$ и ${}^{3}P_{2}$ представлены в табл. 3 (рис. 2, рис. 3).

Рис.2. Зависимость заселенности метастабильных состояний аргона в

атмосфере чистого аргона от давления: 1- ${}^{3}P_{2}$; 2- ${}^{3}P_{0}$.

Рис.3. Зависимость заселенности метастабильных состояний аргона в

смеси аргона с силаном от давления: $1 - {}^{3}P_{2}$; $2 - {}^{3}P_{0}$.

Таблица 3.

Заселенность метастабильных состояний аргона.

Метастабильное	Ρ,	Ar	$Ar + SiH_4$
состояние	Тор	$N, 10^{10}$ см $^{-3}$	$N, 10^7 cm^{-3}$
	0,02	12,2	16,6
	0,03	11,1	16,3
${}^{3}P_{2}$	0,05	10,5	15,7
	0,07	10,5	15,5
	0,1	9,9	15,4
	0,02	10,1	15,3
	0,03	9,8	15,2
${}^{3}P_{0}$	0,05	9,7	15,0
	0,07	9,7	15,0
	0,1	9,7	15,0

Результаты расчетов показали, что заселенность метастабильных состояний аргона падает с ростом давления. Это объясняется тем, что с ростом давления увеличивается частота столкновений метастабильных атомов аргона с атомами аргона в основном состоянии (процесс №5, табл. 2).

Заселенность метастабильных состояний в атмосфере смеси аргонсилан ниже, чем в атмосфере чистого аргона. Это указывает на эффективность протекания реакций (процессы №9, №10, табл. 2) разложения молекул силана при столкновении с метастабильными атомами аргона. Путем решения системы уравнений (7-10) были определены заселенности колебательных уровней метастабильного состояния молекулы азота, заселенности основного и метастабильного состояний атомов азота, а также концентрация электронов.

Полная заселенность метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекулы азота определялась суммированием заселенностей отдельных колебательных уровней состояния $A^{3}\Sigma_{u}^{+}$.

Исследование заселенности метастабильного состояния $A^{3}\Sigma_{u}^{+}$ проводилось в тлеющем разряде, как в положительном столбе тлеющего разряда, так и в отрицательном свечении. При этом ток разряда менялся в диапазоне от 100 до 400 *мА*, давление – от 0,01 до 5 *Top*. Кроме того, проводилось определение заселенности метастабильного состояния $A^{3}\Sigma_{u}^{+}$ в условиях напыления тонких пленок нитрида алюминия. При этом ток тлеющего разряда менялся в диапазоне от 100 до 400 *мА*, давление – от 0,002 до 0,06 *Top*. Ток дугового разряда был постоянным и составлял 25 *A*. Зависимости заселенности колебательного уровня v = 3 состояния $B^{3}\Pi_{g}$ от давления газа и тока тлеющего разряда представлены на рис. 4 и рис. 5.

Таблица 6.

Возможные процессы заселения и дезактивации состояния

$C^3\Pi_{\mu}$	молекулы	азота.
\sim 11_{μ}	monenginor	<i>usonnu</i>

N⁰	Процесс	k_i , см ³ ·сек ⁻¹
6.	$2N_2(A) \to N_2(C) + N_2(X)$	$2 \cdot 10^{-11}$
15.	$N_2(A) + N_2(B) \rightarrow N_2(C) + N_2(X)$	$4,6 \cdot 10^{-10}$
16.	$N_2(A) + N_2(X) \rightarrow N_2(C) + N_2(X)$	$3 \cdot 10^{-10}$
17.	$N_2(C) + N_2(X) \rightarrow N_2(A) + N_2(X)$	$3 \cdot 10^{-10}$
18.	$N_2(A) + e \to N_2(C) + e$	$2 \cdot 10^{-13}$
19.	$N_2(C) + e \to N_2(A) + e$	10^{-10}
26.	$N_2(X) + e \to N_2(C) + e$	1,205 · 10 ⁻¹¹
27.	$N_2(B) + e \to N_2(C) + e$	$<1,3\cdot10^{-10}$
28.	$N_2(B) + N_2(X) \rightarrow N_2(C) + N_2(X)$	<10 ⁻¹³
29.	$N_2(C) \to N_2(B) + hv$	2,2·10 ⁷ сек ⁻¹
30.	$N_2(C) + N_2(X) \rightarrow N_2(B) + N_2(X)$	10 ⁻¹¹
31.	$N_2(C) + N_2(X) \rightarrow 2N_2(X)$	10 ⁻¹¹
32.	$N_2(C) + e \to N_2(B) + e$	10 ⁻⁸

<u>В третьей главе</u> приведены результаты определения заселенности метастабильного состояния $A^{3}\Sigma_{u}^{+}$ молекулярного азота в плазме тлеющего и вакуумно-дугового разрядов. Кроме того, исследована зависимость заселенности состояния $A^{3}\Sigma_{u}^{+}$ от условий возбуждения тлеющего разряда.

Заселенность метастабильного состояния молекулярного азота рассчитана из уравнения баланса, исходя из измерений заселенности возбужденного электронного состояния $B^3 \Pi_{g}$.

Заселенность колебательных уровней состояния $B^3 \Pi_g$ молекулярного азота определялась по интенсивности электронноколебательных полос первой положительной системы азота (переход $B^3 \Pi_g \to A^3 \Sigma_u^+$).

При этом в качестве интенсивности электронно-колебательного перехода использовалась площадь $S_{v'v'}$ под кривой S(x), описывающей изменение наблюдаемого почернения соответствующей полосы вдоль координат спектрального прибора.

Значение $S_{\nu'\nu'}$ определялось методом численного интегрирования. Для этого предварительно проводилось фотометрирование полосы по контуру через величину $\Delta \lambda_0 = 0.01 \text{ мм.}$

Расчет заселенности колебательных уровней по интенсивности полос излучения проводился по формуле:

$$N_{\nu'} = \frac{\frac{d\lambda}{dx} K(\lambda; T_{\Lambda}) S_{\nu'\nu''}}{lh \nu_{\nu'\nu''} A_{\nu'\nu''}},$$

где $\frac{d\lambda}{dx}$ – обратная дисперсия, определяемая по спектрограмме; l – длина регистрируемой части разряда; $A_{\nu'\nu''}$ – вероятность электронноколебательного перехода; $T_{,r}$ -температура вольфрамовой ленты лампы *Cu*-8-200V; $S_{\nu'\nu''}$ - площадь под кривой почернения полосы; $K = \frac{E(\lambda, T_{,r})}{z(\lambda; T_{,r})}$ -

(6)

калибровочный коэффициент; $z(\lambda; T_n)$ - отклонение по оси Y на спектрограмме при мощности излучения лампы $E(\lambda, T_n)$; $hv_{v'v''}$ - квант энергии излучения.

Суммарная погрешность определения заселенностей колебательных уровней состояния $B^3 \Pi_g$ молекулы азота не превышала 30 %.

Известно, что в стационарных условиях уровень заселенности возбужденных состояний атомов и молекул в разряде определяется целой совокупностью различных процессов. На основании имеющихся литературных данных по константам взаимодействия была составлена система энергетически возможных процессов заселения и девозбуждения метастабильного состояния молекул азота в тлеющем разряде.

На основе выбранных процессов было составлено уравнение баланса для состояния $(A^{3}\Sigma_{u}^{+}, v)$ молекулы азота, которое имеет вид:

Уравнение для основного состояния атома азота $N({}^4S)$ и метастабильного $N({}^2P)$ азота имеют вид:

$$-k_{13}N_{A}N_{S} + k_{14}N_{X}N_{P} - k_{20}N_{e}N_{S} + k_{23}N_{e}N_{P} + k_{24}N_{e}N_{X} - k_{25}(N_{S})^{2}N_{X} = 0$$

$$k_{13}N_{A}N_{S} - k_{14}N_{P}N_{X} + k_{20}N_{S}N_{e} - k_{21}N_{P}N_{S} - \frac{D_{P}}{\Lambda^{2}}N_{P} - k_{23}N_{e}N_{P} = 0$$
(9)

Коэффициент диффузии атомов $N({}^2P)$ к стенкам $D_P = 220/P c M^2 \cdot c e \kappa^2$

Оценка концентрации электронов проведена путем измерения абсолютной интенсивности полосы испускания 3804.9 Å второй положительной системы азота (переход $C^3\Pi_u \to B^3\Pi_g$). Для состояния $C^3\Pi_u$ была составлена схема процессов заселения и девозбуждения (табл. 6), на основе которой было составлено уравнение баланса для этого состояния:

$$k_{6}(N_{A})^{2} + k_{15}N_{A}N_{B} + k_{16}N_{A}N_{X} - k_{17}N_{C}N_{X} + k_{18}N_{e}N_{A} - k_{19}N_{e}N_{C} + k_{26}N_{e}N_{X} + k_{27}N_{e}N_{B} + k_{28}N_{B}N_{X} - A_{29}N_{C} - k_{30}N_{C}N_{X} - k_{31}N_{C}N_{X} - k_{32}N_{e}N_{C} = 0$$
(10)

где N_C - заселенность нулевого колебательного уровня состояния молекулы азота.

девозбуждения состояний $N({}^{4}S)$ и $N({}^{2}P)$ атома азота приведены в табл. 5.

Таблица 5.

Основные процессы образования и гибели атомов $N(^2P)$ и $N(^4S)$

в	раз	ряде	в	азоте.
---	-----	------	---	--------

N⁰	Процесс	k_i , см ³ ·сек ⁻¹
13.	$N_2(A) + N({}^4S) \rightarrow N_2(X) + N({}^2P)$	$5 \cdot 10^{-11}$
14.	$N_2(X) + N(^2P) \rightarrow N_2(A) + N(^4S)$	$5 \cdot 10^{-11}$
20.	$N({}^{4}S) + e \to N({}^{2}P) + e$	$(2\div 6)\cdot 10^{-10}$
21.	$N({}^{2}P) + N({}^{4}S) \rightarrow 2N({}^{4}S)$	$1,8 \cdot 10^{-12}$
22.	$N(^{2}P) \xrightarrow{\text{стенка}} N(^{4}S)$	$\frac{\left(200/p(Top \times (T_{z}/300)^{3/2} + (T_{z}/300)^{3/2}\right)}{ce\kappa^{-1}}$
23.	$N({}^{2}P) + e \to N({}^{4}S) + e$	$2 \cdot 10^{-9}$
24.	$N_2(X) + e \to 2N({}^4S) + e$	$5,732 \cdot 10^{-12}$
25.	$2N(^{4}S) + N_{2}(X) \rightarrow 2N_{2}(X)$	(0,2÷3)·10 ⁻³ см ⁶ /сек ⁻¹

 $k_1 N_X N_e + A_2 N_B + N_B N_X (k_3 + k_9) - N_A N_X (k_4 + k_7 + k_{16}) (N_A)^2 (k_5 + k_6) - N_A N_e (k_8 + k_{11} + k_{18}) + k_{10} N_e N_B - \frac{D_A}{\Lambda^2} N_A -$ (7) $k_{13}N_AN_S + k_{14}N_XN_P - k_{15}N_AN_B + k_{17}N_CN_X + k_{19}N_CN_e = 0,$ где N_X - концентрация молекул азота в основном состоянии; N_{A} -заселенность колебательного уровня v метастабильного состояния $A^{3}\Sigma^{+}_{\mu}$ молекулы азота; N_{B} - заселенность колебательного уровня ν' возбужденного состояния $B^3\Pi_{\rho}$ молекулы азота; N_{ρ} - заселенность метастабильного состояния атома азота; $N_{\scriptscriptstyle S}$ - концентрация атомов азота *N*_e -концентрация В основном состоянии; электронов; $k_1, k_3 - k_{11}, k_{13} - k_{19}$ - коэффициенты скоростей процессов, приведенные в табл. 4. Значение коэффициента k₉ определялось из соотношения детального баланса. Концентрация молекул N_{χ} рассчитывалась по основному уравнению кинетической теории газов.

Таблица 4.

Основные процессы заселения и девозбуждения состояния

$A^{3}\Sigma_{u}^{+}$	в разряде.
-----------------------	------------

N⁰	Процесс	k_i , см 3 ·сек $^{-1}$
1.	$N_2(X) + e \to N_2(A) + e$	1,654 · 10 ⁻¹⁰
2.	$N_2(B) \to N_2(A) + hv$	$(1\div 2)\cdot 10^5 c$ $e\kappa^{-1}$
3.	$N_2(B) + N_2(X) \rightarrow N_2(A) + N_2(X)$	$(1,3\div7,5)\cdot10^{-11}$
4.	$N_2(A) + N_2(X) \rightarrow N_2(B) + N_2(X)$	$3 \cdot 10^{-10}$
5.	$2N_2(A) \to N_2(B) + N_2(X)$	1,2.10-9
6.	$2N_2(A) \to N_2(C) + N_2(X)$	$2 \cdot 10^{-11}$
7.	$N_2(A) + N_2(X) \rightarrow 2N_2(X)$	1,5 · 10 ⁻¹⁶
8.	$N_2(A) + e \to N_2(X) + e$	10^{-8}
9.	$N_2(B) + N_2(X) \to 2N_2(A)$	2,8·10 ⁻¹⁰
10.	$N_2(B) + e \to N_2(A) + e$	$3 \cdot 10^{-9}$
11.	$N_2(A) + e \to N_2(B) + e$	$4 \cdot 10^{-9}$

N⁰	Процесс	k_i , см ³ ·сек ⁻¹
12.	$N_2(A) \xrightarrow{cmenka} N_2(X)$	$\frac{815}{p(\text{MM.pm.cm.})} \times (T_{z}/300)^{3/2}$
13.	$N_2(A) + N({}^4S) \rightarrow N_2(X) + N({}^2P)$	5.10-11
14.	$N_2(X) + N(^2P) \rightarrow N_2(A) + N(^4S)$	$5 \cdot 10^{-11}$
15.	$N_2(A) + N_2(B) \rightarrow N_2(C) + N_2(X)$	$4,6\cdot 10^{-10}$
16.	$N_2(A) + N_2(X) \rightarrow N_2(C) + N_2(X)$	$3 \cdot 10^{-10}$
17.	$N_2(C) + N_2(X) \rightarrow N_2(A) + N_2(X)$	$3 \cdot 10^{-10}$
18.	$N_2(A) + e \to N_2(C) + e$	$2 \cdot 10^{-10}$
19.	$N_2(C) + e \to N_2(A) + e$	10 ⁻¹⁰
*В данной и всех последующих таблицах для краткости записи электронное состояние обозначено только соответствующими латинскими буквами. Например, $N_2(X^1\Sigma_g^+, v) \equiv N_2(X), \ N_2(A^3\Sigma_u^+, v) \equiv N_2(A).$		

Для решения уравнения необходимо оценить концентрацию атомов $N({}^{4}S)$ и $N({}^{2}P)$. Основные процессы возбуждения и