Важно отметить, что использование цеолитного катализатора снижает содержание серы в продукте, однако не позволяет достичь значений для соответствия требованиям [4], поэтому для полученного продукта требуется дополнительно проводить гидроочистку.

Таким образом, из полученных результатов можно заключить, что облагораживание дизельных топлив на цеолитном катализаторе является эффективным и перспективным процессом, позволяющим значительно улучшить низкотемпературные свойства продукта.

Литература

- 1. Алтынов А.А., Богданов И.А., Белинская Н.С., Попок Е.В., Киргина М.В. Производство автомобильных бензинов с использованием стабильного газового конденсата и продуктов процесса «Цеоформинг» в качестве смесевых компонентов // Электронный научный журнал Нефтегазовое дело. – 2019. – № 2. – С. 217-242.
- 2. Восмериков А.А., Восмерикова Л.Н., Данилова И.Г., Восмериков А.В. Получение ароматических углеводородов из C3, C4-алканов на цеолитных катализаторах // Журнал Сибирского федерального университета. Серия: Химия. 2019. Т. 12. № 1. С. 144-154.
- ГОСТ 305-2013 «Топливо дизельное. Технические условия» [Электронный ресурс]. Режим доступа: http://docs.cntd.ru. – Дата обращения: 20.12.2019 г.
- Технический регламент таможенного союза ТР ТС 013/2011 «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и мазуту». [Электронный ресурс]. Режим доступа: http://docs.cntd.ru – Дата обращения 20.12.2019 г.
- 5. Трапезникова Е.Ф., Смольникова Т.В., Хафизова С.Р., Николаева Т.В., Нурисламова Р.Р. Перспектива применения цеолитсодержащих катализаторов в процессе алкилирования // Электронный научный журнал Нефтегазовое дело. 2018. № 4. С. 117-143.
- Шавалеев Д.А., Павлов М.Л., Басимова Р.А., Фаттахов М.М. Синтез и исследование физико-химических и каталитических свойств катализаторов на основе цеолита HZSM-5 // Башкирский химический журнал. – 2019. – Т. 26. – № 3. – С. 22-25.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ПИРОЛИЗА

А.А. Бунаев, И.О. Долганова, И.М. Долганов, Э.Д. Иванчина, М.Н. Чернышов, М.Ю. Межова Научный руководитель - к.т.н., научный сотрудник Долганова И.О.

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Для широкого спектра процессов используемых в нефтехимической отрасли пиролиз углеводородов является одним из основных крупнотоннажных процессов, формирующих их сырьевую базу. На сегодняшний день разработки направленные на усовершенствование проведения процесса пиролиза ведутся в двух основных направлениях [2]. Во-первых, проводится модернизация самой технологии пиролиза – проводится техническое перевооружение существующих установок и проектирование новых с использованием новых разработок. Во-вторых, создаются математические модели для поиска оптимальных режимов ведения процесса. При этом наибольший интерес вызывает создание детерминированных моделей, поскольку они позволяют провести многосторонний анализ процесса, что поможет сформировать определенную стратегию оптимизации [4].

Анализ процесса пиролиза углеводородного сырья был выполнен с помощью кинетической модели, предложенной Жоровым Ю., Васильевой Н.И. и Панченковым Г.М [3]. Таким образом, модель кинетики процесса пиролиза состоит из 8 реакций, приведенных ниже, в которых задействованы 12 компонентов.

$$\begin{split} C_2H_6 &\rightarrow 0.47C_2H_4 + 0.53CH_4 \\ C_3H_8 &\rightarrow 0.32C_2H_4 + 0.34C_2H_6 + 0.16C_3H_6 + 0.18CH_4 \\ C_4H_{10} &\rightarrow 0.10C_4H_6 + 0.32C_2H_4 + 0.27C_3H_6 + 0.15C_2H_6 + 0.16CH_4 \\ C_5H_{12} &\rightarrow 0.16C_3H_6 + 0.37C_2H_6 + 0.35C_2H_4 + 0.12CH_4 \\ C_2H_4 &\rightarrow 0.15C_2H_2 + 0.85H_2 \\ C_2H_4 &\rightarrow \text{полимеры} \\ C_3H_6 &\rightarrow \text{полимеры} \\ \Pi_0$$
лимеры \rightarrow коронен

Несмотря на то, что полученная модель основывается на достаточно упрощенной схеме реакций, она, тем не менее, дает возможность получить расчётные данные по концентрациям основных компонентов рассматриваемой углеводородной смеси в широком диапазоне температур.

Соответственно, математическая модель кинетики пиролиза включает в себя, во-первых, систему из 7 экспоненциальных алгебраических уравнений для расчета констант скоростей соответствующих реакций [5]:

$$K_j = K_{0j} \cdot P_0 \cdot \exp\left(\frac{-E_j}{RT}\right), j \in \{1, \dots, 7\},\$$

где K_j – константа скорости реакции j, c^{-1} , K_j – предэкспоненциальный множитель, c^{-1} , P_0 – давление процесса, атм, E_j – энергия активации реакции j, Дж/моль, T – температура процесса, °K.

СЕКЦИЯ 12. СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ПРИРОДНЫХ РЕСУРСОВ. ПОДСЕКЦИЯ 2 – ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ ПОДГОТОВКИ И ПЕРЕРАБОТКИ ГОРЮЧИХ ИСКОПАЕМЫХ.

Во-вторых, еще 11 уравнений являются дифференциальными и необходимы для описания изменений концентраций каждого компонента смеси углеводородов в ходе процесса пиролиза [5]:

$$\frac{dC_k}{d\tau} = \sum a_{i,j} \cdot K_j \cdot C_i$$

где C_i , C_k – концентрация компонента *i*, *k*, моль/л, τ – время контакта, с, $a_{i,j}$ – стехиометрический коэффициент компонента i в реакции j.Полученная система уравнений решается методом Рунге-Кутта первого порядка согласно алгоритму, приведенному на рисунке 1, который реализован средствами Руthon3.

Рис.1. Алгоритм работы математической модели пиролиза

Как можно заметить из предложенного алгоритма в работе модели учитывается нестационарность процесса – каждый раз при прохождении вложенного цикла перебирающего время контакта, которое, в свою очередь, необходимо для описания поведения углеводородной смеси вдоль трубки змеевика реактора пиролиза, итератор астрономического времени увеличивает свое значение. Учет астрономического времени необходим затем, что он позволяет расширить модель и добавить к ней расчет концентрации кокса по формуле ниже и, соответственно, толщину его отложений на стенках труб реактора [1].

$$\frac{dC_{\text{коронена}}}{d\tau} = K_8 C_{\text{коронена}} - \exp(0.023 \cdot C_{\text{коронена}} - 1) \cdot G^{0.8} \cdot (D - 2 \cdot \delta)^{-1.8}$$

где G – массовый расход сырья, кг/с, D – диаметр трубки, мм, δ – толщина отложений коронена, мм.

Работа полученной таким образом модели пиролиза была протестирована с помощью набора входных данных о пропан-бутановой фракции представленных в таблице 1.

Входные данные о пропан-бутановой фракции для модели

Таблица 1

Состав углеводородной смеси, % масс. Температура, °К Метан Этан Этилен Пропан Пропилен Бутан Бутадиен 10,1 9,6 17,2 18,2 11,5 30,4 3 825

В результате работы модели в течении 6 дней (6 проходов внешнего цикла) были получены расчеты, описывающие накопление слоя коронена на стенках труб реактора пиролиза, представленные на рисунке 2.

Рис.2. Рост слоя коронена на стенках трубки в течение 6 дней

Таким образом, был получен прототип модели процесса пиролиза. Дальнейший ход работы заключается в масштабировании схемы превращений– предлагается увеличить количество рассматриваемых веществ и, соответственно, реакций с их участием. Затем необходимо также составить помимо кинетической гидродинамическую, энергетическую и тепловую модели процесса. Другим важным аспектом в ходе разработки является получение соответствующих данных от действующего производства. И, наконец, требуется создание графической оболочки для разрабатываемой модели для реализации ее в качестве программного обеспечения.

Литература

- 1. Fernandez-Baujin J. M., Solomon S. M. New reactor design offers benefits//Oil Gas J. 1976. V. 74. P. 94-95.
- 2. Битюков В.К., Тихомиров С.Г., Арапов Д.В., Саввин С.С. Моделирование процесса пиролиза прямогонного бензина с использованием генетического алгоритма//Вестник Воронежского государственного университета инженерных технологий. Воронеж, 2015. №3. С. 79 84
- Моделирование физико-химических процессов нефтепереработки и нефтехимии / Под ред. Ю.М. Жорова М.: Химия, 1978. – 376 с.
- 4. Малецкий В. Ю., Долганов И. М., Долганова И. О. Математическое моделирование процесса компаундирования бензинов с использованием компьютерной моделирующей системы Compounding // Химия и химическая технология в XXI веке: материалы XX Международной научно-практической конференции имени профессора Л. П. Кулёва студентов и молодых ученых, 20–23 мая 2019 г., г. Томск. — Томск, 2019. — С. 380-381.
- 5. Самедов Ф.А., Морозов А.Ю., Самойлов Н.А., Просочкина Т.Р. Математическое моделирование нестационарного процесса пиролиза углеводородов//Нефтехимия. Москва, 2019. № 2. С. 143 151.

ОЦЕНКА ТЕРМОДИНАМИЧЕСКОЙ ВЕРОЯТНОСТИ ПРЕВРАЩЕНИЙ УГЛЕВОДОРОДОВ СТАБИЛЬНОГО ГАЗОВОГО КОНДЕНСАТА В ПРОЦЕССЕ ЦЕОФОРМИНГ Р.А. Быков, В.В. Быкова

Научный руководитель - доцент М.В. Киргина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Важнейшим процессом получения высокооктановых бензинов на большинстве нефтеперерабатывающих заводов является риформинг. Но алюмоплатиновый катализатор, используемый в данном процессе, является весьма чувствительным к азотсодержащим и сернистым соединениям, в связи с чем необходима предварительная подготовка сырья, что приводит к дополнительным капитальным и эксплуатационным затратам. Перспективной альтернативой риформингу может служить процесс каталитической переработки стабильного газового конденсата (СГК) на цеолитных катализаторах, которые отличаются селективностью действия, стабильностью, высокой стойкостью к сернистым соединениям и повышенной активностью [3]. Кроме этого, данный процесс не требует использования водородсодержащего газа и позволяет перерабатывать сырье, имеющее температуру выкипания 120-250 °С, в автомобильные бензины, не используя при этом компаундирование и антидетонаторы. Конечно, цеолитные катализаторы имеют и отрицательные стороны, например, высокую крекирующую способность и сравнительно быстро дезактивируются, но подбор оптимальных технологических параметров позволит учесть эти особенности, а математическая модель упростит переход на промышленные масштабы.

Первой стадией создания математической модели химико-технологического процесса является разработка формализованной схемы превращения веществ на основе данных термодинамического анализа протекающих реакций. Значения термохимических свойств молекул при стандартных условиях можно найти в различных