АНАЛИЗ СТРУКТУРНОЙ СХЕМЫ ТОМЬ-УСИНСКОЙ ГРЭС А.С. Виноградов, Н. М. Космынина

Научный руководитель - доцент Н. М. Космынина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Питание электрической энергией потребителей нефтяной промышленности осуществляется от сетей энергосистем или от собственных местных электрических станций. Потребители с большой установленной мощностью электрифицированных механизмов, например, перекачивающие насосные станции магистральных трубопроводов, комплекс установок нефтяных промыслов, как правило, питаются от электростанций, входящих в энергосистемы. Именно такой электростанцией является Томь-Усинская ГРЭС, которая предназначена для покрытия базисных нагрузок Кузбасской энергосистемы.

Станция введена в эксплуатацию 6 ноября 1958 года. Последние модернизации происходили в 2014 году: были установлены две новые турбины мощностью по 121,4 и 124 МВт и установлено новое вспомогательное оборудование [6].

Цель доклада: проанализировать соответствие структурной схемы нормативным материалам по проектированию: СП ТЭС-2007 "Свод правил по проектированию тепловых электрических станций " [5].

Структурная схема электростанции приведена на рис. 1 [1].

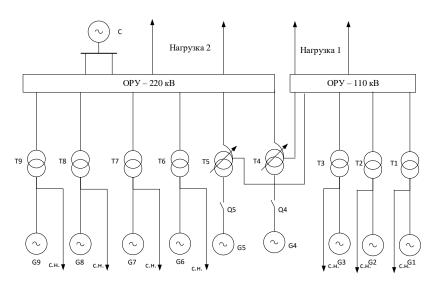


Рис.1 Структура электрической части электростанции

Таблица 1

Характеристики турбогенераторов

Тип;	Вид системы возбуждения	Описание системы охлаждения			
обозначение		Статора		Ротора	
на схеме		Обмотки	Стали	Обмотки	Бочки
ТГВ-200-	Тиристорная схема	Водяное	Водородное	Водород	Водородное
2У3 (G6, G7,	независимого возбуждение,		_	непосредст	_
G8, G9)	самовозбуждение; бесщеточное			венно	
TB2-100-2E	Тиристорная система	Водород	Водородное	Водород	
(G1, G2, G3)	независимого возбуждения и	косвенно		косвенно	
	тиристорная система				
	самовозбуждения				
ТВФ-125-	Возбуждение от машинного	Косвенно	Водородное	Непосредст	
2У3 (G4, G5)	возбудителя переменного тока	водородное		венное	
	повышенной частоты			водородное	

Для турбогенератора ТВ2-100-2E данные взяты из [2]. Для турбогенератора ТВ Φ -125 данные приняты по ближайшему по мощности турбогенератору - ТВ Φ - 120 2У3 - [4]. Для турбогенератора ТГВ-200 данные приняты по [3]

Типы силовых трансформаторов и автотрансформаторов: ТДЦ–125000/110, на схеме обозначены — Т1, Т2, Т3; ТДЦ–250000/220, на схеме обозначены — Т6, Т7, Т8, Т9; АТДЦТН — 250000/220/110; на схеме обозначены Т4, Т5. Схема электрических соединений ОРУ 110 кВ представлена на рис. 2. [1].

В докладе приведены результаты проверки соответствия приведенных выше схем современным нормам технологического проектирования тепловых электростанций Соответствие структурной схемы нормативным материалам по проектированию [5].

Результаты сведены в таблицу 2.

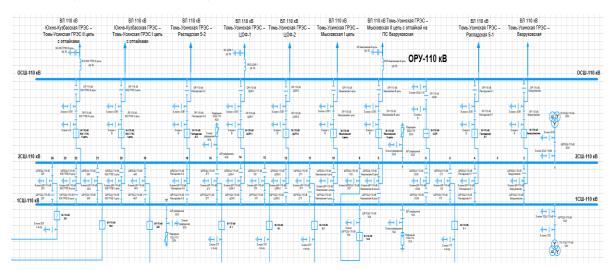


Рис. 2 Схема электрических соединений ОРУ-110 кВ

Таблица 2

Соответствие структурной схемы электростанции нормативным материалам по проектированию [4]

Объект структурной схемы Томь-Усинской ГРЭС	Вид проверки	Описание	Результат соответствия
Турбогенераторы	Системы охлаждения	Косвенно водородное Непосредственное водородное	Соответствует
Турбогенераторы	Системы возбуждения	Тиристорная система независимого возбуждения; самовозбуждения, высокочастотная	Соответствует частично
Блоки генератор- трансформатор	Схемы блоков	Блочное	Соответствует
Силовые трансформаторы автотрансформаторы	Типы	Трехфазные	Соответствует
Распределительные устройства	Связь между распределительными устройствами	Блочные автотрансформаторы с РПН	Соответствует
	Схемы электрических соединений	Две рабочие системы сборных шин с обходной	Соответствует
Собственные нужды	Питание	Два резервных трансформаторов собственных нужд	Соответствует

Литература

- 1. Виноградов, А. С. Анализ электроснабжения Томь-Усинской ГРЭС [Электронный ресурс] / А. С. Виноградов, Н. М. Космынина; науч. рук. Н. М. Космынина // Проблемы геологии и освоения недр: труды XXIII Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 120-летию со дня рождения академика К. И. Сатпаева, 120-летию со дня рождения профессора К. В. Радугина, Томск, 8-12 апреля 2019 г. В 2 т. / Национальный исследовательский Томский политехнический университет, Инженерная школа природных ресурсов; гл. ред. А. С. Боев; под ред. Е. Ю. Пасечник. 2019. Т. 2. [С. 220-222]. Заглавие с экрана. Свободный доступ из сети Интернет. Режим доступа: http://earchive.tpu.ru/handle/11683/56221
- 2. Каталоги и справочники по электротехнике на 01.01.2001. М.: Информэнерго, 2001. –176 с.
- 3. МакаричевЮ.А., ОвсянниковВ.Н. М 15 Синхронныемашины: учеб.пособ./ Ю.А. Макаричев, В.Н. Овсянников. Самара. Самар.гос.техн.ун-т, 2010. 156с.: https://docplayer.ru/25994993-Yu-a-makarichev-v-n-ovsyannikov-sinhronnye-mashiny-utverzhdeno-redakcionno-izdatelskim-sovetom-universiteta-v-kachestve-uchebnogo-posobiya.html
- 4. Неклепаев Б. Н.; Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектировния: учеб. пособие / Б. Н. Неклепаев, И. П. Крючков. 5-е изд., стер. СПб: БХВ-Петербург, 2014. 608 с.: ил. (Учебная литература для вузов).
- 5. Свод правил по проектированию тепловых электрических станций СП ТЭС-2007. РАО "ЕЭС РОССИИ", 2007 г.
- 6. Томь-Усинская ГРЭС URL: http://sibgenco.ru/about/enterprise/40838/ (дата обращения: 10.12.18).