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Abstract. This study is aimed at getting simplified model of mill filling technological process 

of fine crushing in a closed-circuit grinding with screen separation. Optimal and simple model 

structure are supposed to be used in adaptive predictive control loop. The minor factors that 

directly affect the mill load indicator are not taken into account, since some of them cannot be 

directly measured, and other ones affect the process only in the long term. In this paper the 

athors considered mill filling process identification in the center-discharge ball mill by the 

method of neural networks (NN). The method includes the identification of the nonlinear 

process using nonlinear autoregressive with external input (NARX) neural network. The most 

accurate model was found by varying the structural parameters of the network. The best 

models were tested in the course of the actual grinding process. The best estimation of the NN 

model to the real object is obtained with 72.1% match. 

1. Introduction 

Optimal control remains a complex problem in the mining industry for many years due to various 

uncertainties in the models of control objects, nonlinearities, changes in parameters and their 

interdependences [1]. Figure 1 shows the parameters that directly affect to the apatite-nepheline fine 

crushing process in a closed-circuit grinding with a ball mill and vibrating screens separation. 

 

 

Figure 1. Simplified functional block of the mill. 

The flowrates of ore and water are the main material flows entering in the closed grinding cycle. 

The ore is fed into the mill load by a frequency-driven belt conveyor. The water is supplied at several 
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points of the grinding cycle in order not to clog the chutes and changing the density of the output pulp 

product to the flotation process. The flowrate of reagents does not affect the processes occurring in the 

mill. The reagents are fed in the mill to obtain the necessary properties of the output pulp product for 

flotation. The topsize product returning to the mill from screen separation cannot be measured either 

qualitatively or quantitatively. The topsize product flow is a dependent parameter on the main input 

material flows for a stationary process, because the constancy of the technical characteristics of 

vibrating screens. Other inputs are short-duration perturbations such as ore moisture, ambient vibration 

and long-term perturbations such as volume of balls in the mill and working volume of the mill [2, 3]. 

Thus, the number of input parameters indicates the complexity of the object. 

The main output parameter of the control object is a load, i.e. material mill filling [4]. Practice 

shows that the stabilization of the load at the optimum level gives maximum quality indicators of the 

grinding and a possibility to avoiding the mill overload. The mill overload is achieved if the mill 

overflows with a material. The overload indicator is the vibration which is measured on the main 

bearing housing at the discharge chute. This parameter is also called as «noise». The overload 

adversely affects to the service life of the equipment and the implementation of the grinding plan. In 

addition, load stabilization is important for the energy efficiency of the entire production process due 

to the high energy consumption of the process [4]. 

Modern control systems for grinding include a load stabilization algorithm based on various control 

approaches [1,6,7]. Domestic algorithms are developed on a cascade PID controller, and still often 

operate in manual mode or to a limited extent due to the fear of overloading of the mill. PID is stable 

and efficient, but only around the set of nominal operating points. The permissible overshoot value, 

determined by the experience of operating the apatite-nepheline fine crushing process control system, 

is 3% for the control channel. PID approach does not allow achieving this quality of regulation in the 

mode of the maximum productivity of the mill. Also, advanced control algorithms are actively used 

and very promising. Model Predictive Control (MPC) is the most popular and successful strategy in 

non-stationary process control with parameter changes. A special feature of the approach is the using 

of the process model to calculate the predicted response of the process at future times. The optimal 

model is the most important part of the MPC strategy. Such a model should cover the key dynamic 

characteristics of the process and allow calculating predictions [8]. To apply MPC strategy for a 

particular industrial process, it is necessary to build a custom simulation mathematical model of the 

object. Thus, to simulate the process of filling the mill with the material, we choose key measuring 

channel characterizing mill load dynamic: flowrate of ore in the mill / «noise». 

2. Description of the method of modelling 

The task is to synthesize the optimal structure of the neural model of the control object, to determine 

the initial parameters of the neural network of the neural model at the current operating point of the 

control object. The method included the identification of the object with using Neural Network 

Toolbox 8.4 with the Time Series Tool for the synthesis of custom neural networks with delay lines 

for input and output signals. The presence of delay lines provides the dynamics of the model, i.e., 

current output ( 1)y t   is predicted as a weighted sum of past output values and current and past input: 

 ( 1) ( ( ), ( 1),..., ( ), ( ), ( 1),..., ( )).x yy t f x t x t x t d y t y t y t d        (1) 

Equation (1) is called the “regression” equation and xd , yd  are the numbers of input and output delays 

required by the autoregressive model.  

One important aspect of identification of nonlinear systems is choosing the right time delays for 

each of the input variables and choosing the number of regressors, i.e., the number of previous 

samples of each variable that will be considered in the system model at a given moment [9]. The 

choice of fixed and variable factors is based on the analysis of literary sources [10, 11]. Therefore, the 

following key factors have changed to build a autoregressive neural network model of the of the 
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control object: 
xd , yd  and the number of neurons in the hidden layer. All tested NNs models had the 

following fixed factors: 

 

 type: recurrent neural network (RNN); 

 layers: one input layer, one hidden layer, one output layer; 

 transfer function of neurons in hidden layer: tansig; 

 transfer function of neurons in output layer: purelin; 

 number of neurons in output layer: 1.  

 

The values of the limits and intervals of variation of variable factors: 

 

 number of neurons in hidden layer ranging from 7 to 12 with an interval of 1; 

 the number of feedbacks of the input of the neural network (
xd ) ranging from 1 to 7 with an 

interval of 1; 

 the number of feedbacks of the output of the neural network ( yd ) ranging from 1 to 3 with an 

interval of 1. 

 

The differences of the RNN model output and control object output are calculated using fit and mean 

squared error (MSE). Estimations are given by the following equations: 
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where n – number of training samples, k – model sample time, ky  – real plant output at sample time k, 

ˆ
ky  – model RNN output at sample time k, y  – mean real plant output. 

All NNs were trained using Levenberg-Marquardtt backpropagation algorithm (trainlm) in 2000 

epoch with testing and validation. The data are measured from apatite-nepheline grinding process for 

training networks. The measurements were provided every second for about 10 hours of mill 

operation. There were 33555 training input/output samples with 1 second sample time. The input data 

is the flowrate of ore (t/h) and the output data is the «noise» (%). Trained NNs were checked on 

training data, on test data and on online data during the grinding process. For online test the laptop is 

connected to the local computer network of the grinding section automation system. Modbus OPC 

server is used to establish a connection to the Simulink model and PLC-system. Access to the data 

"inside" the SCADA-server is carried out according to the standard Modbus rules. We focused on 

finding the best fitting neural network and in the end compared the best fitting neural network with 

others Matlab System Identification Toolbox techniques for nonlinear identification: tree partition 

method, wavelet method, Hammerstein-Wiener model. 

3. Results and discussion 

It is established that the increase in the number of delays of the output signal by 1 decrease the fit on 

training data by 2-3 times. That’s why further networks were built with one delay of the output signal. 

In general, 42 neural networks were synthesized varying dx from 1 to 7 and number of neurons from 7 

to 12. The learning time increased with the increase in the number of neurons of the hidden layer and 

dx. Training of some networks stopped on exceeding validation checks. Most of the networks were 

trained during all 2000 epochs. Performances of all training procedures were less than 0.0001. The 
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graphs and results of the online simulation of some models obtained and the output of the real object 

are presented in figure 2 and in table 1. 

 

 
Figure 2. Results of models simulation 

 

Table 1. Results of the simulation. 

Model 

Training data Test data Real data 

fit, % MSE fit, % MSE fit, % MSE 

'0831'a 92.889 0.0104 65.863 0.2546 72.132 0.2501 

'1241' 93.118 0.0098 65.217 0.2643 68.482 0.3200 

'1221' 93.770 0.0080 63.107 0.2973 66.428 0.3630 

'1271' 94.313 0.0067 61.666 0.3210 64.797 0.3991 

'1261' 93.189 0.0096 64.025 0.2827 64.050 0.4163 

'1131' 93.244 0.0094 63.856 0.2854 64.027 0.4168 

'0941' 95.097 0.0050 64.773 0.2711 63.916 0.4194 

'0751' 84.292 0.0508 61.409 0.3253 62.931 0.4426 

'0851' 84.292 0.0508 61.407 0.3254 62.643 0.4495 

'1251' 84.282 0.0509 61.405 0.3254 62.640 0.4496 

'A' 95.473 0.0050 52.848 0.4857 45.429 0.9592 

'B' 97.733 0.0039 70.251 0.1933 8.55 2.0971 

'C' 97.544 0.0043 67.616 0.2291 5.73 3.2791 
a Models name decoding: 0831 – 08 - number of neurons in hidden layer; 3 -  dx; 1 -  dy. 

 

The results in the table 1 are sorted in descending order of fit on the real process data. Three 

models of other NARX techniques are shown in the end of table 2: 'A' - Hammerstein-Wiener model 

with 1 output and 1 input (linear transfer function nb = 2, nf = 3, nk = 1, input nonlinearity: pwlinear 

with 10 units, output nonlinearity: pwlinear with 10 units); 'B' - nonlinearity: wavenet with 25 units, 

standard regressors: na = 1, nb = 5, nk = 1; 'C' - tree partition method.  

An increase in the number of neurons in the hidden layer in the general trend showed an increase in 

modelling accuracy. The number of input feedbacks of the neural network greater than 3 had an 

advantage over the others. Comparing with other methods of nonlinear identification, the result of 

repeating the object on the training sample (33555 samples) and on the test sample (30000 samples) in 

nonlinear models was higher than the neural models. But on a real process data, these models showed 

poor results relative to NNs. As in [12], neural networks showed the best results. 
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Figure 3. “0831” structure view in Matlab 

 

The following neural network weights for layer 1 (hidden) were obtained for the best fit neural 

network "0831" architecture (figure 3): 
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 (4) 

for layer 2 (output): 

 
 

 
11 12 13 14 15 16 17 18 1

0.5739 0.2819 0.0882 0.5142 0,2982 0.7147 0.4983 0.0158 4.0286 .

w w w w w w w w w b 

      
  (5) 

The obtained neural network model is characteristic of this control object only for the considered 

steady-state control mode, since disturbances affecting the process are not taken into account in the 

model. The disturbances need to be taken into account in order to manage quality, so the initial model 

must be constantly refined. Refining the parameters of the object model in the process of obtaining 

new data from the worker consists in the repeated parametric identification of the neural network 

model of the object. Thus, in order to predict the behaviour of an object, it is sufficient to perform 

online training of a neural network with initial parameters. Re-training should be carried out to achieve 

the critical deviation of the output predicted by the model from the real output of the object. To do 

this, it is sufficient to supplement the online algorithm with a recursive parameter estimate to detect 

deviations of the system operation parameters for a given operating point. 

4. Conclusions 
Experiments were carried out to search for the optimal model of a ball mill as a control object over the 

channel “flowrate of ore - noise” using NARX neural networks. We succeeded 72.1% fit of the real 

control object behaviour with the neural network "0831" architecture. The model can be used to 

synthesize MPC or advanced nonlinear regulators, including the best fit NN model in the predictive 

control loop. Also modern methods of neural network modelling are applied in this study and the 

intuitive algorithm for constructing a process model based on a recurrent neural network is obtained. 

Undoubtedly, the model obtained by such a method is more complicated from the point of view of 
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solving the MPC problem in comparison with the state-space model. The solution of the MPC problem 

with the neural model can be obtained by numerical methods with an approximation to the desired 

simulation accuracy. In addition, it will take more computing resources. However, the flexibility of the 

neural network approach as a universal approximation function allows us, in spite of the shortcomings, 

to achieve greater modelling accuracy. 
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