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Abstract. Structural studies and mechanical tests of additively manufactured samples from AISI 

321 steel copper C110000 have been carried out. Mechanical tensile tests of 321 steel show slight 

differences in the ultimate tensile strength (up to 3-4%) and ductility (up to 10%) of test coupons 

tested along the material growth direction and along the layer deposition direction. The strength 

of C11000 copper samples is 9.4% higher in the layer deposition direction, but their ductility is 

15.4% lower than that of samples deformed in the growth direction. The strain relief on the 

surface of the polished gage section of the steel test coupons demonstrates changes in the material 

structure with small elongated grains along the growth direction of the sample. The deformation 

relief of copper samples is mainly related to the deformation of large columnar grains stretched 

in the growth direction.  

1. Introduction 

It is known that the process of plastic deformation in the loaded metals and alloys produced by the 

conventional crystallization from the melt is not homogeneous, and is accompanied by the appearance 

of localized plastic deformation, the formation of necks [1], Chernov-Lüders bands [2,3], rotation of 

individual crystal fragments [4], etc. At present, additive manufacturing, which also known as the metal 

3D-printing, are being actively developed. This is confirmed by a large number of scientific papers on 

the selective laser melting of a powder metal (SLM) [5,6], electron-beam additive manufacturing 

(EBAM) [7], and others. In addition to methods based on melting or sintering of powder particles, there 

is an active development of wire-based additive technologies using laser, electro-arc or electron-beam 

heat sources for melting a filament. Since 3D printing of metals has a potential to partially replace 

conventional manufacturing methods, there is a problem of the influence of new manufacturing 

processes on both the strength and performance properties of metals and alloys under conditions of 

different stress-strain state schemes. Due to the rather complex elongated structure directed towards the 

sample growth, in materials produced using the wire-feed electron-beam additive technology, 

mechanical properties will also have a certain dependence on the direction of the stress application 

relative to the direction of the structural components distribution. 
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The purpose of the work is to study the influence of deformation axis orientation relative to the 

direction of the sample growth in the shape of a vertical "wall" on the process of plastic deformation 

under the tension of AISI 321 stainless steel and copper grade C11000, which have significant 

differences in the structure formed during the electron beam 3D-printing.  

2. Material and method 

Steel and copper samples were manufactured on the experimental equipment [8], designed for the 

manufacture of products by the EBAM technology in vacuum. The stainless steel AISI 321 wire with 

the diameter of 1.2 mm was used as a feedstock. The diameter of the C11000 copper wire is 1,0 mm. 

To melt the wire and ensure the formation of a molten pool, an electron beam heat source was used. The 

general scheme of the technological process is presented in figure 1,a. In figure 1,b the photo of a wall 

made during 3D printing with an indication of sample cutting zones in different printing directions is 

given: along the growth direction (6) and along the layer deposition direction (7). At least 3 test coupons 

were cut from copper and steel samples for mechanical testing in each direction.  

 
Figure 1. Schematic of EBAM process (a), as well as the printed steel sample with the diagram of the 

cutting positions of samples. 1 – substrate, 2 – molten alloy, 3 – electron beam, 4 – electron beam gun, 

5 – wire feeder, 6 – test coupons cut out in the layer deposition direction, 7 - test coupons cut out in 

the sample growth direction (building direction). 

3. Results and discussion 

A more detailed picture of the wall microstructure is presented in figure 2 at different magnifications. 

The microstructure is represented by a cast structure with the formation of a well-seen dendritic 

component. The structure represents the precipitation of δ-ferrite in the main matrix of the austenite (f 

in figure 2, b). Black spots on the images are probably defects that occurred during mechanical surface 

finishing: grinding and polishing. 

The microstructure of copper samples, in contrast to steel ones, is represented by large columnar 

grains stretched along the sample growth direction (figure 2, c). The grain size in the transverse direction 

can exceed 300-500 microns, and in the longitudinal direction it can be more than 10 mm, which has 

also been noted in [9]. Some grains can grow from the lower to the upper edge of the sample. At the 

same time, there are also inhomogeneities of the grain structure in the sample volume, which are large 

enough areas with a smaller grain size than in the main sample (figure 2, d). Thus, the grain size in such 

areas can reach 200 µm and more. Copper samples differ from steel ones also in the presence of defects 

as pores, mainly of a spherical shape (figure 2, d).  

In Figure 3 there are images of AISI 321 steel test coupons after the tensile testing. The test coupon 

cut along the growing direction (figure 3, a) has fewer plastic properties than the one cut across. The 

test coupon deformation is characterized by a pronounced "neck" formation at the last stage of the testing 

process, followed by specimen fracture. This is characteristic of test coupons cut both in the growth 

direction (figure 3, a) and across it (figure 3, b). 
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The deformation of copper samples in different directions relative to the growth one occurs with a 

pronounced dependence of the plastic deformation on the sample cutting direction, which can be clearly 

seen on the surface of the deformed specimens after the fracture (figure 4).  

 

Figure 2. Optical micrographs of the printed wall structure. 

Along the growth direction (figure 4, a), the deformation occurs both in the area with columnar 

elongated grains and in the area with the fine structure. But the deformation localization and the 

subsequent fracture occurs mainly in coarse grains with the formation of "neck". In this case, the fracture 

occurs after reaching the ultimate tensile strength.  

 

Figure 3. Images of steel test coupons fractured during the static tensile testing: a - specimen cut in 

the vertical direction (the wall growth direction); b - specimen cut in horizontal direction 

(the layer deposition direction). 

In samples cut out in the layer deposition direction, the deformation develops mainly in large grains 

as well. Despite the presence of the structure heterogeneity, the fracture occurs in the region of the large 

grain structure (figure 4, b). The pores clearly visible in the structure of metallographic specimens were 



PFSD 2020

Journal of Physics: Conference Series 1611 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1611/1/012005

4 

not observed on the surface of test coupons and their influence on the process of plastic deformation 

was not evaluated. 

 

Figure 4. Images of copper test coupons fractured during the static tensile testing: a - specimen cut in 

the vertical direction (the wall growth direction); b - specimen cut in horizontal direction 

(the layer deposition direction). 

 

The process of the steel 321 deformation under tension (figure 5, a) develops in 3 main stages. These 

include the stage of elastic deformation, the stage of plastic flow with parabolically changing stress 

values and the stage with high and slightly changing stress values preceding the neck formation and the 

test coupon fracture. This is true for both types of test specimens. In this case, at the elastic deformation 

and parabolic stages, the differences are small or absent completely. The largest differences are 

characteristic at the last stage of deformation, the duration and stresses of which are higher for specimens 

cut along the layer deposition direction (see Figure 3). The difference in plasticity was ~10 %. The 

average value of the ultimate tensile strength of samples cut out in the growth direction is equal to 540 

MPa, and for samples cut out in the layer deposition direction, it is equal to 557 MPa. The average 

values of the relative elongation until the “neck” formation for both directions are 61,5 and 68,0 %, 

respectively. In this way, in samples from the 321 steel, the influence of the strain direction on the 

ultimate tensile strength not exceed 3 – 4 %, and on the ductility, not more than 10 %.   

 

 

Figure 5. Tensile curves of steel 321 (a) and copper C11000 (b) steel samples: 1 – specimen cut in the 

vertical direction (the wall growth direction); 2 - specimen cut in horizontal direction 

(the layer deposition direction). 
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The plastic deformation of copper samples before the end of the elastic deformation stage also has 

no pronounced differences from the strain direction relative to the growth direction (figure 5, b). Upon 

the transition to the plastic deformation, the differences in the stress-strain curve between these types of 

samples begin to increase. Samples cut in the layer deposition direction have the greatest strength of 

157.0 MPa. Samples cut in the growth direction have an average value of 142.2 MPa. The ductility of 

samples cut in the growth direction is equal to 39%, and in the transverse direction, it is about 33%. 

Thus, the strength of specimens in the direction transverse to the growing direction is higher by 9.4%, 

and the ductility is lower by 15.4% than for specimens deformed in the growing direction. 

4. Conclusion 

In the present work, the samples from steel 321 and copper C11000 produced by EBAM method have 

low differences in mechanical properties during plastic deformation, which is confirmed by tensile 

diagrams. The analysis of the test coupon surface after fracture shows quite significant deformation 

relief changes caused by the deformation mechanism along and across the grains elongated in the growth 

direction. Changes in mechanical properties in tests of both materials performed at different strain 

directions show lower values of the ultimate tensile strength during testing in the direction of the sample 

growth. The ductility during deformation along the growth direction of steel is lower, and during the 

deformation of copper, it is higher than for similar test coupons cut in the layer deposition direction. 

Thus, the studies show that in the additively manufactured samples made of copper or steel under 

conditions of tensile testing in different directions, the strength and ductility undergo changes by up to 

10-15%, and for steel with a less pronounced growth direction, changes in mechanical properties are 

less than for copper.  

The work was performed according to the Government research assignment for ISPMS SB RAS, 

project No. III.23.2.11. 
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