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Abstract. We report high-pressure synchrotron X-ray powder diffraction data for the W-rich 

cubic ZrW2-xMoxO8 (x=0.4) up to 10 GPa with open decompression. This study shows that 

cubic- ZrW1.6Mo0.4O8 transforms to orthorhombic phase at the 5.04 GPa. Pressure-induced 

reversable amorphization of material was observed at 8.13 GPa. The obtained data suggest that 

W-rich cubic ZrW2-xMoxO8 (x=0.4) solid solutions are more attractive for creating products 

working under extreme conditions and mechanic stress. 

1.  Introduction 

Most materials show a positive coefficient of thermal expansion, which may be explained by the 

increase in average bond lengths with increasing thermal energy [1]. There is, however, a few 

phenomena which give an opposing effect and contribute to contraction on heating. In some cases, 

these effects outweigh the general increase in bond lengths, and lead to a net negative thermal 

expansion (NTE) [2-5]. Much of the recent interest in NTE has been based on the system ZrW2-

xMoxO8 (0≤x≤2) shows a significantly large thermal compression with α = -11.8×10-6 K-1 (for x=1.6) 

[6]. The ZrW2-xMoxO8 (0≤x≤2) system is used in the production of composite materials with 

controllable coefficient thermal expansion (CTE), where several materials, including ceramics, metal 

and polymers, can act as a matrix [7-10]. The precision products with an adjusted coefficient of 

thermal expansion are widely used in various fields such as aerospace engineering, high-precision 

optics, electronics, oil and gas industry. Thus, the study of ZrW2-xMoxO8 (0≤x≤2) phase transitions 

under the influence of temperature and pressure is of great importance. ZrW2O8 and ZrMo2O8 phase 

transitions depending on the applied pressure have been studied intensively [11, 12]. A pressure-

induced phase transition γ-ZrMo2O8 (cubic, P213) occurs at pressures of 0.7-2.0 GPa, compared to 

0.21 GPa for the similar transition from cubic ZrW2O8 (P213) to orthorhombic phase with P212121 

symmetry [13-15]. Carlson and Andersen [16] has shown that at room temperature α-ZrMo2O8 
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(trigonal, P3̅c) turns into β-ZrMo2O8 (monoclinic, C2/m) at about 1.1 GPa, and another phase 

transition from β-ZrMo2O8 to the triclinic phase with P1 space group symmetry occurs in the pressure 

range from 2 to 2.5 GPa. 

The effect of pressure on ZrW2-xMoxO8 (with x=1 and x=1.6) was reported previously by the 

authors [17]. This study shows that disordered cubic- ZrWMoO8 (space group Pa3̅) transforms to 

ordered cubic- ZrWMoO8 (space group P213) at low pressure. A further high-pressure influence leads 

followed by amorphization of the sample at 2.2 GPa. All transformations are irreversible. Pressure-

induced changes from cubic to orthorhombic ZrW2-xMoxO8 (x=1.6) phase at 1.38 GPa are observed. 

The sample amorphization is irreversible during decompression. The aim of this article is to synthesize 

W-rich ZrW2-xMoxO8 (x=0.4) using the hydrothermal method and to study properties under the 

pressure for comparison with previously obtained data.  

2.  Experimental procedure 

The precursor ZrW1.6Mo0.4O7(OH,Cl)2∙2H2O was obtained by the most effective hydrothermal method 

described in [18,19]. Na2WO4·2H2O (1.648 g), Na2MoO4 (0.247 g) and ZrOCl2 ·8H2O (1.035) in the 

required stoichiometric ratio were dissolved in H2O (5 ml). The resulting solutions were mixed and 15 

ml of 8M hydrochloric acid solution was added and mixed again. The hydrothermal reaction was 

carried out in a steel autoclave (volume 70 ml) with a Teflon insert at a temperature of 450 K for 48 

hours. The resulting product was washed several times with distilled water. The filtration was carried 

out and dried in an oven at a temperature of 380 K for 24 hours. The powder of 

ZrW1.6Mo0.4O7(OH,Cl)2∙2H2O was examined by powder X-ray diffraction on a DRON-RM4 

diffractometer (CuKα source, graphite monochromator at the diffracted beam, room temperature, 2θ 

range 5–60°). The EDX spectral analysis was performed using a Hitachi TM3030 desktop scanning 

electron microscope and the Quantax70 microanalysis system. 

The cubic-ZrW1.6Mo0.4O8 was synthesized at 800 K. The powders of ZrW1.6Mo0.4O8 have been 

examined with powder X-ray diffraction on a DRON-RM4 diffractometer (CuKα source, graphite 

monochromator at the diffracted beam, room temperature, 2 range 5–50o). The experimental data 

were processed with Topas Academic software. 

Pressure powder X-ray diffraction experiments were carried out at the European Synchrotron 

Radiation Facility (ESRF) ID15B High Pressure Beamline up to 10 GPa with open decompression. 

Determination of high-pressure phases of the ZrW1.6Mo0.4O8 using angular dispersive diffraction on 

cells with a membrane-controlled diamond anvil with ditches of 600 μm. As pressure transmitting 

medium was used ethanol-water medium with a small ruby crystal. Pressure was measured using the 

ruby luminescence method. X-ray diffraction patterns were integrated using Dioptas and Topas 

academic software. 

3.  Result and discussion 

We performed an EDX investigation for the prepared sample of ZrW1.6Mo0.4O7(OH,Cl)2∙2H2O and 

found that the preset stoichiometry was retained in the product of the reaction within the experimental 

uncertainty.  

Rietveld refinement of the powder X-ray diffraction data for ZrW1.6Mo0.4O8 was carried out in 

Topas Academic and structural model consisting of the P213 structure of ZrW1.6Mo0.4O8 without 

additional phases were identified. The Rietveld fit is shown in Figure 1. 

The research data of ZrW2-xMoxO8 (x=1.6) sample under the influence of pressure are presented in 

Figure 2. It was found that under an applied pressure of 5.04 GPa the cubic ZrW1.6Mo0.4O8 undergoes 

a phase transition to orthorhombic phase. As can be seen from Figure 2 at a pressure of an 8.13 GPa 

(black line) structure becomes X-ray amorphous. The onset of amorphization was determined by the 

broadening of the peaks and the disappearance of orthorhombic reflections from the diffraction data. It 

is interesting to note that, in comparison with Mo-rich ZrW2-xMoxO8 (0≤x≤2) solid solutions for W-

rich materials, a reversible amorphization is observed, which is expressed in the appearance of 

additional peaks in the X-ray diffraction patterns. 
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Figure 1. Rietveld refinement plot for ZrW2-xMoxO8 (x=0.4): observed powder pattern (green); 

calculated diffraction pattern (red); difference plot (black). 

 
Figure 2. Pressure-induced changes in ZrW2-xMoxO8 (x=0.4). 

4.  Conclusion 

The behavior of cubic ZrW1.6Mo0.4O8 on compression up to 10 GPa with open decompression was 

examined by a synchrotron X-ray diffraction at the European Synchrotron Radiation Facility (ESRF) 

ID15B High Pressure Beamline. The diffraction data show the complete formation of 

orthorhombic ZrW2O8 at high pressure (5.04 GPa) and amorphization onset at 8.13 GPa. The phase 

transition pressure is much higher than for the pure cubic phase of zirconium tungstate and Mo-rich 

ZrW2-xMoxO8 (0≤x≤2) solid solutions. The obtained data describe the W-rich ZrW2-xMoxO8 (0≤x≤2) 
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solid solutions as the most attractive for creating composites that will work under extreme pressures in 

many industries. 
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