

СПИСОК ЛИТЕРАТУРЫ

- 1. Виды и разновидности датчиков измерения уровня жидкости [Электронный ресурс] Режим доступа: https://rusautomation.ru/datchiki_urovnya/datchiki-urovnya-zhidkosti, свободный. Загл. с экрана (дата обращения: 6.05.2020).
- 2. Методы контроля технологических параметров ядерных энергетических установок: учебное пособие / А.А. Денисевич, Е.В. Ефремов, С.Н. Ливенцов; Национальный исследовательский Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2014.

СИСТЕМА АВТОМАТИЧЕСКОГО ДОЗИРОВАНИЯ ПЛАВИКОВОШПАТОВОГО КОНЦЕНТРАТА ПЕЧНЫХ АГРЕГАТОВ ПРОИЗВОДСТВА БЕЗВОДНОГО ФТОРИСТОГО ВОДОРОДА

Д.И. Тетерин, Н.С. Криницын, В.Ф. Дядик

Национальный исследовательский Томский политехнический университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: TeterinDI@yandex.ru

Получение фтористого водорода на Сублиматном заводе Сибирского химического комбината осуществляется разложением плавиковошпатового концентрата (ПШК) серной кислотой в печных агрегатах производства безводного фтористого водорода (БФВ)[1]. От качества поддержания на заданном уровне расхода ПШК зависит качество получаемого продукта и срок службы технологического оборудования. Существующая методика управления расходом ПШК, путем ручной корректировки частоты вращения шнеков дозаторов, не удовлетворяет требованиям к качеству управления.

Рассмотрев различные варианты стратегий управления расходом ПШК, было решено применить систему автоматического управления (САУ) с переменной структурой. Во время опустошения бункера структура САУ представлена одноконтурной системой управления, построенной на принципе «по отклонению» с использованием ПИ-регулятора, критерием управления которого является величина рассогласования заданного расхода ПШК от расчетного по показаниям весоизмерительных устройств[2]. Во время пополнения бункера происходит останов расчета расхода и управляющего воздействия с сохранением предыдущих выходных параметров регулятора. Определение начала и окончания процесса пополнения расходных бункеров происходит автоматически по набору условий, учитывающих состояние транспортного шнека и динамику изменения расчетных расходов ПШК. Метод фильтрации данных с весоизмерительных устройств выбран на основе анализа результатов применения наиболее зарекомендовавших себя на практике методов фильтрации к производственным данным[3].

По производственным данным, полученных в разомкнутом контуре управления, составлена математическая модель процесса дозирования плавиковошпатового концентрата как объекта управления с использованием программного комплекса Matlab Simulink. Произведен структурный и параметрический синтез регулятора. Методом математического моделирования произведены испытания САУ с последующим уменьшением пропорционального коэффициента с целью снижения динамики управляющего воздействия. В ходе производственных испытаний САУ доказана эффективность и работоспособность разработанной системы автоматического дозирования ПШК.

СПИСОК ЛИТЕРАТУРЫ

- 1. Маслов, А. А. Химическая технология фторида водорода [Текст] : учеб. пособие / А. А. Маслов, Н. С. Тураев, Р. В. Оствальд ; Томский политех. ун-т. Томск : Изд-во Томского политех. ун-та, 2012. 109 с.
- 2. Ким, Д. П. Теория автоматического управления. [Текст] Т. 1. Линейные системы. 2-е изд., испр. и доп. М. : ФИЗМАТЛИТ, 2019. 312 с.
- 3. Изерман, Р. Цифровые системы управления [Текст] : [пер. с англ.]. М.: Мир, 1984. 541 с.: ил.

МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ ВТОРИЧНОЙ ИОНИЗАЦИИ ТРИТИЯ В ТВЕРДОТЕЛЬНОЙ МИШЕНИ ПУЧКОМ ИОНОВ В СПО SRIM

Д.С. Флусова, Г.Н. Дудкин, Д.К. Чумаков

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: dsf7@tpu.ru

В настоящее время интерес для ядерной физики представляет изучение реакций $T(p, \gamma)^4$ He, $T(^3\text{He}, \gamma)^6\text{Li}$ в диапазоне энергий порядка десятков кэВ с целью экспериментального определения сечений. Для исследования данных реакций используется импульсный ускоритель ИДМ-40, способный создавать пучки налетающих на тритиевую мишень ионов интенсивностью порядка 10^{14} ионов за один импульс. Тритиевая мишень представляет собой молибденовый диск, на который наносится титановое напыление, в кристаллическую решетку которого внедряется тритий с образованием устойчивого соединения $TiT_{1.7}$ [1].

В результате упругого рассеяния налетающих ионов на ядрах мишени может происходить выбивание трития, что приводит к протеканию побочных реакций, в частности, Т(T, nn)⁴He. Нейтронный фон от побочных реакций необходимо учитывать при проведении исследований. Для этого требуется уточнить число рассеянных из мишени за каждый импульс ускорителя ядер трития под действием налетающих ионов [1].

Расчет выхода трития был произведен путем моделирования методом Монте-Карло попадания протонов с заданной энергией в мишень (напыление со стехиометрией ${\rm TiT_{1.7}}$ толщиной 1.5 мкм) и подсчета вылетевших из мишени ядер трития в программе TRIM, входящей в инструментарий SRIM. Аналогичные значения выхода были рассчитаны аналитически с помощью резерфордовского сечения упругого рассеяния.

В результате были получены значения числа выбитых из мишени ядер трития для типичного импульса интенсивностью 10^{14} протонов. На рис. 1 сравнены результаты, полученные при моделировании в СПО SRIM и при расчете с помощью сечения Резерфорда. Полученные значения согласуются с результатами масс-спектрометрического анализа остаточных газов в вакуумной камере ускорителя после выстрела.